Prototype scale mooring load and transmission tests for a floating tire breakwater /
Resumo |
Prototype scale tests of the mooring load and wave transmission characteristics of a floating tire breakwater were conducted in the large wave tank at the Coastal Engineering Research Center. Standard Goodyear Tire and Rubber Co. 18-tire modules connected to form breakwaters, 4 and 6 modules (8.5 and 12.8 meters, 28 and 42 feet) wide in the direction of wave advance, were tested in water depths of 2 and 4 meters (6.56 and 13.12 feet). Monochromatic waves with a 2.64- to 8.25-second period range and heights up to 1.4 meters (4.6 feet) were used in the tests. Test results indicate that wave transmission is mainly a function of the breakwater width to incident wavelength ratio with a slight dependence on the incident wave height. However, the mooring forces are mainly a function of the incident wave height with only a slight dependence on the incident wavelength and breakwater width. Recommended design curves for the wave transmission coefficient versus breakwater width to wavelength ratio and mooring load as a function of incident wave height are presented. (Author). "April 1978." Cover title. Includes bibliographical references (page 42). Prototype scale tests of the mooring load and wave transmission characteristics of a floating tire breakwater were conducted in the large wave tank at the Coastal Engineering Research Center. Standard Goodyear Tire and Rubber Co. 18-tire modules connected to form breakwaters, 4 and 6 modules (8.5 and 12.8 meters, 28 and 42 feet) wide in the direction of wave advance, were tested in water depths of 2 and 4 meters (6.56 and 13.12 feet). Monochromatic waves with a 2.64- to 8.25-second period range and heights up to 1.4 meters (4.6 feet) were used in the tests. Test results indicate that wave transmission is mainly a function of the breakwater width to incident wavelength ratio with a slight dependence on the incident wave height. However, the mooring forces are mainly a function of the incident wave height with only a slight dependence on the incident wavelength and breakwater width. Recommended design curves for the wave transmission coefficient versus breakwater width to wavelength ratio and mooring load as a function of incident wave height are presented. (Author). Mode of access: Internet. |
---|---|
Formato |
bib |
Identificador | |
Idioma(s) |
eng |
Direitos |
Items in this record are available as Public Domain, Google-digitized. View access and use profile at http://www.hathitrust.org/access_use#pd-google. Please see individual items for rights and use statements. |
Palavras-Chave | #Water waves. #Breakwaters, Mobile. #Water waves. #Breakwaters, Mobile |
Tipo |
text |