982 resultados para NaA zeolite


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basalts recovered from Hole 504B during ODP Leg 111 are more or less altered, but there is no sign of strong shear stress or widespread penetrative deformation; hence, they retain well their primary (igneous) structures and textures. The effect of alteration is recognized as the partial or total replacement of primary minerals (olivine, clinopyroxene, and plagioclase) by secondary minerals and as the development of secondary minerals in open spaces (e.g., veins, fractures, vugs, or breccia matrix). The secondary minerals include zeolite (laumontite and stilbite), prehnite, chlorite, epidote, Plagioclase (albite and/or oligoclase), amphibole (anthophyllite, cummingtonite, actinolite, and hornblende), sodic augite, sphene, talc, anhydrite, chalcopyrite, pyrite, Fe-Ti oxide, and quartz. Selected secondary minerals from several tens of samples were analyzed by means of an electron-probe microanalyzer; the results are presented along with brief considerations of their compositional features. In terms of the model basaltic system, the following two types of low-variance (three-phase) mineral assemblages were observed: prehnite-epidote-laumontite and prehnite-actinolite-epidote; both include chlorite, albite and/or oligoclase, sphene, and quartz. The mineral parageneses delineated by these low-variance mineral assemblages suggest that the metamorphic grade ranges from the zeolite facies to the prehnite-actinolite facies. The common occurrence of prehnite indicates that greenschist facies conditions were not attained even in the deepest level of Hole 504B, which, in a strict sense, contradicts the previous interpretation that the lower portion of Hole 504B suffered greenschist facies alteration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hole 504B, drilled into the 5.9 Ma crust of the southern flank of the Costa Rica Rift, tapped a hydrothermal system in its conductive stage. Three alteration zones were encountered along the 561.5 meters of basement drilled. The upper alteration zone, 274.5 to 584.5 meters below the seafloor (BSF), is characterized by the presence of color zonation in which red halos are located between dark gray inner rock portions and dark gray outer bands. The red halos are characterized by an abundance of iddingsite, and they have higher K2O contents and Fe3+/FeT ratios, but lower SiO2 contents, than the adjacent dark gray inner zones. The dark gray outer bands are characterized by the presence of celadonite-nontronite. Saponite is omnipresent in these three alteration bands. Phillipsite is the only zeolite that occurs in the upper alteration zone. The upper alteration zone is interpreted as being the result of low-temperature alteration, with large amounts of cold oxygenated seawater percolating through the upper ocean crust. In the upper alteration zone, the formation of red halos was both preceded and followed by formation of dark gray outer bands. Then followed formation of dark gray cores. The lower alteration zone (584.5-835.5 m BSF) is characterized by the absence of color zonation, the downward-increasing abundance of pyrite and saponite, and the presence of quartz, talc, and calcite. The chemical changes (downhole MgO enrichment and concomitant CaO depletion) observed in the basalts of the lower alteration zone are thought to result from reactions of oceanic basalts with evolved seawater (i.e., solutions derived from seawater that has already reacted with ocean crust), which is thus depleted in oxygen, potassium, and radiogenic strontium. This alteration process, which was responsible for saponite formation in both the upper and lower alteration zones, was rock dominated, and it took place under suboxic to anoxic conditions during a second stage of alteration. Reaction temperatures could have progressively increased with depth. There is also a zeolitic zone that essentially coincides with the lower part of the upper alteration zone (between 528.5 and 563 m BSF). The host rock adjacent to veins of zeolite exhibits a greenish discoloration due to the intensive replacement of the igneous minerals. The replacement minerals result in significant increases in the bulk rock K2O, MgO, CaO, CO2, and H2O+ contents. The solutions circulating along the newly opened fissures had high Ca activity, and minerals probably precipitated in these fissures at 60°C or 110°C. These hydrothermal solutions circulated later than those responsible for the formation of the minerals that characterize the upper and lower alteration zones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At Holes 650A and 651 A, set respectively in the Marsili Basin and the Vavilov Basin, Pleistocene sediments (turbiditic inputs interbedded with essentially hemipelagic sediments) may show layers of mudrocks with moderate to strong induration. Except in the two samples from Hole 651 A, it seems that zeolite crystallization does not play a role in the induration phenomenon. This latter appears to result from in situ clay authigenesis. Secondary K-Fe beidellite or Fe-Mg beidellite form diagenetic growths and bridges between sedimented particles. Turbidites are rich in volcaniclastics (glass, pumices and other volcanogenic elements) but the induration phenomenon appears to be associated essentially with the occurrence of basaltic detritus. It is proposed that clay authigenesis results from low temperature alteration of basaltic fragments issued from Vavilov and probably Marsili seamounts in sediments isolated from seawater by overlying deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Original geological, geophysical, lithological, mineralogical data on uplifts of the Central Atlantic are given in the book based on materials of Cruise 1 of the R/V Akademik Nikolaj Strakhov. Geological and geophysical studies include description of the obtained material and analysis of structural and morphological elements of the ocean floor. Results of lithological, petrochemical and geochemical studies were extremely innovative and develop a conceptual model. The latter include studies of petrochemical evolution of tholeiitic alkaline plate volcanism, large-scale hydrothermal transformation of basement rocks - palygorskitization, phosphatization and ferromanganese mineralization. Showing imposition Superposition of hydrogenic alteration on hydrothermally altered rocks and its role in Cenozoic history of sedimentation is shown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Middle Jurassic basaltic lavas obtained from Site 801 in the western Pacific Pigafetta Basin represent ocean crust from the oldest segment of the present-day Pacific Ocean. A composite 131 m section shows the basement to be composed of an upper alkalic basalt sequence (about 157 Ma) with ocean island basalt chemical features and a lower tholeiitic basalt sequence (about 167 Ma) with typical normal-type mid-ocean ridge basalt features. The basalt sequences are separated by a quartz-cemented, yellow goethite hydrothermal deposit. Most basalts are altered to some degree and exhibit variable, low-grade smectite-celadonite-pyrite-carbonate-zeolite assemblages developed under a mainly hydrated anoxic environment. Oxidation is very minor, later in development than the hydration assemblages, and largely associated with the hydrothermal deposit. The tholeiitic normal-type mid-ocean ridge basalt has characteristically depleted incompatible element patterns and all compositions are encompassed by recent mid-ocean ridge basalt from the East Pacific Rise. Chemically, the normal-type mid-ocean ridge basalt is divided into a primitive plagioclase-olivine +/- spinel phyric group (Mg* = 72-60) and an evolved (largely) aphyric group of olivine tholeiites (Mg* = 62-40). Both groups form a single comagmatic suite related via open-system fractionation of initial olivine-spinel followed by olivine-plagioclase-clinopyroxene. The alkalic ocean island basalt are largely aphyric and display enriched incompatible element abundances within both relatively primitive olivine-rich basalts and evolved olivine-poor hawaiites related via mafic fractionation. In gross terms, the basement lithostratigraphy is a typical mid-ocean ridge basalt crust, generated at a spreading center, overlain by an off-axis seamount with ocean island basalt chemical characters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently published studies of Ocean Drilling Project (ODP) cores from near southeast Asia revealed microtektite contents much higher than those in previously studied cores, suggesting that Ir contents might be enhanced in the tektite-bearing horizons. We determined a positive Ir anomaly in ODP core 758B from the Ninetyeast Ridge, eastern Indian Ocean; the peak Ir concentration of 190 pg/ g was ~2X the continuum level. The net Ir fluence is 1.8+/-0.5 ng/cm**2 over the depth interval from 10.87 to 11.32 m; a small additional peak also associated with microtektites contributes another 0.5 ng Ir/cm**2. Concentrations of Ir in core 769A show more scatter, but a small Ir enhancement is associated with the peak microtektite abundance; our best estimate of the poorly constrained fluence is 1.3+/-0.7 ng/cm**2. Data on deep-sea cores show that the microtektite fluence falls exponentially away from southeast Asia, the fluence dropping a factor of 2 in ~400 km. In southeast Asia the trend merges with a roughly estimated mass fluence of ~1.1 g/cm**2 inferred from evidence of a melt sheet in northeast Thailand. Integration of the inferred distribution yields a total mass of Australasian tektites of 3.2x10**16 g, much higher than previous estimates. Assuming a similar fallout distribution for the impactor and a chondritic composition allows us to calculate its mass to be 1.5x10**15 g, about 3 orders of magnitude smaller than the minimum mass of the impactor responsible for the extinctions at the end of the Cretaceous.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The western flank of the Great Bahama Bank, drilled during ODP Leg 166 at seven sites, represents a prograding carbonate sequence from late Oligocene to Holocene [Eberli et al., Proc. ODP Init. Reports 166 (1997)]. The signatures of the detrital input and of diagenetic alteration are evident in clay enriched intervals from the most distal Sites 1006 and 1007 in the Straits of Florida. Mineralogical and chemical investigations (XRD, TEM, SEM, ICP-MS) run on bulk rocks and on the clay fractions enable the origin and evolution of silicate parageneses to be characterized. Plio-Pleistocene silt and clay interbeds contain detrital clay assemblages comprising chlorite, illite, interstratified illite smectite, smectite, kaolinite and palygorskite. The greater smectite input within late Pliocene units than in Pleistocene oozes may relate either varying source areas or change in paleoclimatic conditions and weathering intensity. The clay intervals from Miocene-upper Oligocene wackestone sections are fairly different, with prevalent smectite in the fine fraction, whose high crystallinity and Mg contents that point towards an authigenic origin. The lower Miocene section, below 1104 mbsf, at depths where compaction features are well developed, is particularly characterized by abundant authigenic Na-K-clinoptilolite filling foraminifer tests. The authigenic smectite and clinoptilolite paragenesis is recorded by the chemical trends, both of the sediment and the interstitial fluid. This diagenetic evolution implies Si- and Mg rich fluids circulating in deeper and older sequences. For lack of any local volcaniclastic input, the genesis of zeolite and the terms of water rock interaction are discussed. The location of the diagenetic front correlates with that of the seismic sequence boundary P2 dated as 23.2 Ma. This correspondence may allow the chronostratigraphic significance of some specific seismic reflections to be reassessed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mineral composition and compounds of sediments from the Guaymas Basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter deals with the evolution of clay minerals in Cenozoic sediments from DSDP Sites 541, 542, and 543 east of the Lesser Antilles arc on and near the edge of the Barbados Ridge complex. Throughout the Miocene, smectite exceeds all other minerals at all three sites. From the Pliocene onward, however, illite becomes dominant and chlorite well-represented. Quantitative mineral differences among the three sites are significant up until the top of the Pliocene. But in the Pleistocene, the mineralogical composition becomes exactly the same at all sites. Data from the Caribbean region are used to interpret the results obtained. These involve two supply sources: (1) the adjacent islands that supply smectites and kaolinites, and (2) South America, which is the major source of illite and chlorite. The apparent northward migration of illite and chlorite on the Barbados Ridge complex and the changes reported in the quantitative distribution of the four clay minerals are most probably controlled by northerly currents along the northern coast of South America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article reviews the history, chemical stratification, biology and biogeochemistry of Ace Lake, which is one of the many marine-derived meromictic (permanently stratified) lakes in the Vestfold Hills, Eastern Antarctica. The lake has an area of 18 ha, a maximum depth of 25 m, and a salinity range from 7 to 43 g l**-1. The lake mixes to a depth of 7 m in late winter as a result of brine freeze out during ice formation. Deeper mixing is precluded by a sharp halocline. The water beneath 12 m is permanently anoxic, The lake was formed approximately 10,800 yr BP as the polar ice cap melted. Sea level rise 7,800 yr BP resulted in invasion of seawater into the initially freshwater lake. Subsequently, sea level dropped, and the now saline lake became isolated from the ocean. The biota of the lake was derived from species trapped when the connection between the lake and the ocean was cut off. The oxic zone above 12 m supports a relatively simple community which includes microbial mats, four major species of phytoplankton (including a picocyanobacterium), two copepod species, and a variety of heterotrophic flagellates and ciliates. The anoxic zone contains populations of photosynthetic sulfur, sulfate reducing, fermentative and methanogenic bacteria, which combine to remineralise organic carbon which sediments from the upper waters. Research on the physics, biology and chemistry of Ace Lake has contributed significantly to knowledge of Antarctic meromictic lakes.