928 resultados para Macro Segregation
Resumo:
We report on ongoing research to develop a design theory for classes of information systems that allow for work practices that exhibit a minimal harmful impact on the natural environment. We call such information systems Green IS. In this paper we describe the building blocks of our Green IS design theory, which develops prescriptions for information systems that allow for: (1) belief formation, action formation and outcome measurement relating to (2) environmentally sustainable work practices and environmentally sustainable decisions on (3) a macro or micro level. For each element, we specify structural features, symbolic expressions, user abilities and goals required for the affordances to emerge. We also provide a set of testable propositions derived from our design theory and declare two principles of implementation.
Inference of the genetic architecture underlying BMI and height with the use of 20,240 sibling pairs
Resumo:
Evidence that complex traits are highly polygenic has been presented by population-based genome-wide association studies (GWASs) through the identification of many significant variants, as well as by family-based de novo sequencing studies indicating that several traits have a large mutational target size. Here, using a third study design, we show results consistent with extreme polygenicity for body mass index (BMI) and height. On a sample of 20,240 siblings (from 9,570 nuclear families), we used a within-family method to obtain narrow-sense heritability estimates of 0.42 (SE = 0.17, p = 0.01) and 0.69 (SE = 0.14, p = 6 x 10(-)(7)) for BMI and height, respectively, after adjusting for covariates. The genomic inflation factors from locus-specific linkage analysis were 1.69 (SE = 0.21, p = 0.04) for BMI and 2.18 (SE = 0.21, p = 2 x 10(-10)) for height. This inflation is free of confounding and congruent with polygenicity, consistent with observations of ever-increasing genomic-inflation factors from GWASs with large sample sizes, implying that those signals are due to true genetic signals across the genome rather than population stratification. We also demonstrate that the distribution of the observed test statistics is consistent with both rare and common variants underlying a polygenic architecture and that previous reports of linkage signals in complex traits are probably a consequence of polygenic architecture rather than the segregation of variants with large effects. The convergent empirical evidence from GWASs, de novo studies, and within-family segregation implies that family-based sequencing studies for complex traits require very large sample sizes because the effects of causal variants are small on average.
Resumo:
Cells are packed with membrane structures, defining the inside and outside, and the different subcellular compartments. These membranes consisting mainly of phospholipids have a variety of functions in addition to providing a permeability barrier for various compounds. These functions involve cellular signaling, where lipids can act as second messengers, or direct regulation of membrane associating proteins. The first part of this study focuses on relating some of the physicochemical properties of membrane lipids to the association of drug compounds to membranes. A fluorescence based method is described allowing for determination of the membrane association of drugs. This method was subsequently applied to a novel drug, siramesine, previously shown to have anti-cancer activity. Siramesine was found to associate with anionic lipids. Especially interesting is its strong affinity for a second messenger lipid phosphatidic acid. This is the first example of a small molecule drug compound specifically interacting with a cellular lipid. Phosphatidic acid in cells is required for the activation of many signaling pathways mediating growth and proliferation. This provides an intriguing possibility for a simple molecular mechanism of the observed anti-cancer activity of siramesine. In the second part the thermal behavior and self assembly of charged and uncharged membrane assemblies was studied. Strong inter-lamellar co-operativity was observed for multilamellar DPPC vesicles using fluorescence techniques together with calorimetry. The commonly used membrane models, large unilamellar vesicles (LUV) and multilamellar vesicles (MLV) were found to possess different biophysical properties as interlamellar interactions of MLVs drive segregation of a pyrene labeled lipid analogue into clusters. The effect of a counter-ion lattice on the self assembly of a cationic gemini surfactant was studied. The presence of NaCl strongly influenced the thermal phase behavior of M-1 vesicles, causing formation of giant vesicles upon exceeding a phase transition temperature, followed by a subsequent transition into a more homogenous dispersion. Understanding the underlying biophysical aspects of cellular membranes is of fundamental importance as the complex picture of the structure and function of cells is evolving. Many of the cellular reactions take place on membranes and membranes are known to regulate the activity of many peripheral and intergral membrane associating proteins. From the point of view of drug design and gene technology, membranes can provide an interesting target for future development of drugs, but also a vehicle sensitive for environmental changes allowing for encapsulating drugs and targeting them to the desired site of action.
Resumo:
A wide range of biotic and abiotic factors, operating over different time perspectives and intensities, cause defoliation and a rapid decrease in the crown size of trees. Scleroderris canker disease [Gremmeniella abietina (Lagerb.) Morelet] has caused widespread crown reduction and tree mortality in Scots pine (Pinus sylvestris L) in forests in Scandinavia during the last three decades. In the 1980's, attempts were made to show, on the basis of the higher foliar N and S concentrations of affected pines in the diseased area, that sulphur and nitrogen deposition predispose trees to G. abietina. Unfortunately, in many studies on defoliated trees, exceptionally high or low needle mineral nutrient concentrations are still often interpreted as one of the causes of tree injury and not, conversely, as the result. In this thesis, three different field experiments, with foliar analysis as the main study method, were conducted in order to asses the possible long-term effects of living crown reduction on the needle nutrient concentrations of Scots pine trees in southern Finland. The crown ratio and length of the living crown were used to estimate the amount of defoliation in the reduced canopies. The material for the partial studies was collected and a total of 968 foliar samples were analysed individually (15-17 elements/sample) on a total of 488 sample trees (140 diseased, 116 pruned and 232 control trees) during the years 1987-1996 in 13 Scots pine stands. All the three experiments of this thesis provided significant evidence that severe, disease-induced defoliation or artificial pruning of the living branches can induce long-lasting nutritional changes in the foliage of the recovering trees under the typical growing conditions for Scots pine. The foliar concentrations of all the 17 mineral nutrients/elements analysed were affected, to a varying degree, by artificial pruning during the following three years. Although Scots pine, as an evergreen conifer, is considered to have low induced chemical responses to defoliation, this study proved experimentally under natural forest conditions that severe artificial pruning or disease-induced defoliation of Scots pine trees may induce biologically significant changes in the concentrations of most of the important macro- and micronutrients, as well as of carbon, in refoliated needles. Concerning the studies in this thesis, I find the results significant in providing new information about the long-term effects of rapid living crown reduction on the foliar nutrient and element status of Scots pine trees. Key words: Foliar analysis, defoliation, needle loss, pruning, nutrients, Pinus sylvestris, Gremmeniella abietina
Resumo:
There is a long tradition of social inquiry concerned with locational patterns and place-based explanations of crime in which urban/rural differences have been regarded as of cardinal importance. The geographical and socio-spatial aspects of punishment have on the other hand been widely neglected. One reason for this is that cities have been treated as the site of the major crime problems, presenting a contrast with what are commonly assumed (often without careful empirical research) to be the naturally cohesive character of rural communities. Thus punishment, like crime, is not a significant or distinctive issue in rural communities, requiring the attention of criminologists. But just as there are significant and distinctive dimensions to rural crime, the practice of punishment in rural contexts raises important questions worthy of attention. These questions relate to (1) the demand for punishment (i.e. the penal sensibilities to be found in rural communities); (2) the supply of punishment according to principles of legal equality (notably the question of the effective availability in rural courts of the full range of penalties administered by urban courts, in particular alternatives to incarceration); and (3) the differential impact of the same penalties when imposed in different geographical settings (e.g. imprisonment may involve distant removal from an offender’s community in addition to segregation from it; license disqualification is a great deal more consequential in settings where public transport is unavailable). The chapter examines these questions by reference to available knowledge concerning patterns of punishment in rural Australia. This will be set against the background of an analysis of the differential social organisation of penality in rural and urban settings. The generally more attenuated nature of the social state and social provision in rural contexts can, depending upon the profile of particular communities (and in particular their degree of social homogeneity), produce very different penal consequences: more heavy reliance on the penal state on the one hand, or greater recourse to informal social controls on the other.
Resumo:
Root architecture traits in wheat are important in deep soil moisture acquisition and may be used to improve adaptation to water-limited environments. The genetic architecture of two root traits, seminal root angle and seminal root number, were investigated using a doubled haploid population derived from SeriM82 and Hartog. Multiple novel quantitative trait loci (QTL) were identified, each one having a modest effect. For seminal root angle, four QTL (-log10(P) >3) were identified on 2A, 3D, 6A and 6B, and two suggestive QTL (-log10(P) >2) on 5D and 6B. For root number, two QTL were identified on 4A and 6A with four suggestive QTL on 1B, 3A, 3B and 4A. QTL for root angle and root number did not co-locate. Transgressive segregation was found for both traits. Known major height and phenology loci appear to have little effect on root angle and number. Presence or absence of the T1BL.1RS translocation did not significantly influence root angle. Broad sense heritability (h 2) was estimated as 50 % for root angle and 31 % for root number. Root angle QTL were found to be segregating between wheat cultivars adapted to the target production region indicating potential to select for root angle in breeding programs. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Muscle glycogen exists in two forms: low molecular weight pro-glycogen and high molecular weight macro-glycogen. The degradation of glycogen to glucose 1 phosphate and free glucose is catalysed by glycogen phosphorylase together with glycogen debranching enzyme (GDE). The process in which glycogen is broken down via anaerobic pathways to lactate, results in the acidification of the muscles and has a great influence on meat quality. Thus, the overall aim of this thesis was to characterise the post mortem action of GDE in muscles of meat production animals (pigs, cattle and chickens). Interest was focused on the differences in GDE activity between fast twitch glycolytic muscles and slow twitch oxidative muscles. The effects of pH, temperature, RN genotype (PRKAG3 gene), and of time post mortem on GDE activity were also investigated. This thesis showed that there are differences in GDE activity between animal species and between different muscles of an animal. It was shown that in pigs and cattle, higher GDE activity and phosphorylase activity exists in the fast twitch glycolytic muscles than in slow twitch oxidative muscles of the same animal. Thus, the high activity of these enzymes enables a faster rate of glycogenolysis in glycolytic M. longissimus dorsi compared to oxidative M. masseter. In chicken muscles, the GDE activity was low compared to pig or cattle muscles. Furthermore, the GDE activity in the glycolytic M. pectoralis superficialis was lower than in more oxidative M. quadriceps femoris despite the high phosphorylase activity in the former. The relative ratios between phosphorylase and GDE activity were higher in fast twitch glycolytic muscles than in slow twitch oxidative muscles of all studied animals. This suggests that the relatively low GDE activity compared to the phosphorylase activity in fast twitch glycolytic muscles may be a protection mechanism in living muscle against a very fast pH decrease. Chilling significantly decreased GDE activity and below 15 C porcine GDE was almost inactive. The effect of pH on GDE activity was only minor at the range normally found in post mortem muscles (pH 7.4 to 5.0). The GDE activity remained level for several hours after slaughter. During the first hours post mortem, GDE activity was similar in RN- carrier pigs and in wild type pigs. However, the GDE activity declined faster in M. longissimus dorsi from wild type pigs than in the RN carrier pigs, the difference between genotypes was significant after 24 h post mortem. Pro-glycogen and macro-glycogen contents were higher, pH decrease was faster and ultimate pH was lower in RN- carrier pigs than in wild type pigs. In the RN- carriers, the prolonged high GDE activity level may enable an extended pH decrease and lower ultimate pH in their muscles. In conclusion, GDE is not the main factor determining the rate or the extent of post mortem glycogenolysis, but under certain conditions, such as in very fast chilling, the inhibition of GDE activity in meat may reduce the rate of pH decrease and result in higher ultimate pH. The rate and extent of pH decrease affects several meat quality traits.
Resumo:
The electrosensory system is found in all chondrichthyan fishes and is used for several biological functions, most notably prey detection. Variation in the physical parameters of a habitat type, i.e. water conductivity, may influence the morphology of the electrosensory system. Thus, the electrosensory systems of freshwater rays are considerably different from those of fully marine species; however, little research has so far examined the morphology and distribution of these systems in euryhaline elasmobranchs. The present study investigates and compares the morphology and distribution of electrosensory organs in two sympatric stingray species: the (euryhaline) estuary stingray, Dasyatis fluviorum, and the (marine) blue-spotted maskray, Neotrygon kuhlii. Both species possess a significantly higher number of ventral electrosensory pores than previously assessed elasmobranchs. This correlates with a diet consisting of benthic infaunal and epifaunal prey, where the electrosensory pore distribution patterns are likely to be a function of both ecology and phylogeny. The gross morphology of the electrosensory system in D. fluviorum is more similar to that of other marine elasmobranch species, rather than that of freshwater species. Both D. fluviorum and N. kuhlii possess 'macro-ampullae' with branching canals leading to several alveoli. The size of the pores and the length of the canals in D. fluviorum are smaller than in N. kuhlii, which is likely to be an adaptation to habitats with lower conductivity. This study indicates that the morphology of the electrosensmy system in.a euryhaline elasmobranch species seems very similar to that of their fully marine counterparts. However, some morphological differences are present between these two sympatric species, which are thought to be linked to their habitat type. (C) 2013 Elsevier GmbH. All rights reserved.
Resumo:
Achieving sustainable consumption patterns is a crucial step on the way towards sustainability. The scientific knowledge used to decide which priorities to set and how to enforce them has to converge with societal, political, and economic initiatives on various levels: from individual household decision-making to agreements and commitments in global policy processes. The aim of this thesis is to draw a comprehensive and systematic picture of sustainable consumption and to do this it develops the concept of Strong Sustainable Consumption Governance. In this concept, consumption is understood as resource consumption. This includes consumption by industries, public consumption, and household consumption. Next to the availability of resources (including the available sink capacity of the ecosystem) and their use and distribution among the Earth’s population, the thesis also considers their contribution to human well-being. This implies giving specific attention to the levels and patterns of consumption. Methods: The thesis introduces the terminology and various concepts of Sustainable Consumption and of Governance. It briefly elaborates on the methodology of Critical Realism and its potential for analysing Sustainable Consumption. It describes the various methods on which the research is based and sets out the political implications a governance approach towards Strong Sustainable Consumption may have. Two models are developed: one for the assessment of the environmental relevance of consumption activities, another to identify the influences of globalisation on the determinants of consumption opportunities. Results: One of the major challenges for Strong Sustainable Consumption is that it is not in line with the current political mainstream: that is, the belief that economic growth can cure all our problems. So, the proponents have to battle against a strong headwind. Their motivation however is the conviction that there is no alternative. Efforts have to be taken on multiple levels by multiple actors. And all of them are needed as they constitute the individual strings that together make up the rope. However, everyone must ensure that they are pulling in the same direction. It might be useful to apply a carrot and stick strategy to stimulate public debate. The stick in this case is to create a sense of urgency. The carrot would be to articulate better the message to the public that a shrinking of the economy is not as much of a disaster as mainstream economics tends to suggest. In parallel to this it is necessary to demand that governments take responsibility for governance. The dominant strategy is still information provision. But there is ample evidence that hard policies like regulatory instruments and economic instruments are most effective. As for Civil Society Organizations it is recommended that they overcome the habit of promoting Sustainable (in fact green) Consumption by using marketing strategies and instead foster public debate in values and well-being. This includes appreciating the potential of social innovation. A countless number of such initiatives are on the way but their potential is still insufficiently explored. Beyond the question of how to multiply such approaches, it is also necessary to establish political macro structures to foster them.
Resumo:
This study explored pre-service secondary science teachers’ perceptions of classroom emotional climate in the context of the Bhutanese macro-social policy of Gross National Happiness. Drawing upon sociological perspectives of human emotions and using Interaction Ritual Theory this study investigated how pre-service science teachers may be supported in their professional development. It was a multi-method study involving video and audio recordings of teaching episodes supported by interviews and the researcher’s diary. Students also registered their perceptions of the emotional climate of their classroom at 3-minute intervals using audience response technology. In this way, emotional events were identified for video analysis. The findings of this study highlighted that the activities pre-service teachers engaged in matter to them. Positive emotional climate was identified in activities involving students’ presentations using video clips and models, coteaching, and interactive whole class discussions. Decreases in emotional climate were identified during formal lectures and when unprepared presenters led presentations. Emotions such as frustration and disappointment characterized classes with negative emotional climate. The enabling conditions to sustain a positive emotional climate are identified. Implications for sustaining macro-social policy about Gross National Happiness are considered in light of the climate that develops in science teacher education classes.
Resumo:
This Paper deals with the analysis of liquid limit of soils, an inferential parameter of universal acceptance. It has been undertaken primarily to re-examine one-point methods of determination of liquid limit water contents. It has been shown by basic characteristics of soils and associated physico-chemical factors that critical shear strengths at liquid limit water contents arise out of force field equilibrium and are independent of soil type. This leads to the formation of a scientific base for liquid limit determination by one-point methods, which hitherto was formulated purely on statistical analysis of data. Available methods (Norman, 1959; Karlsson, 1961; Clayton & Jukes, 1978) of one-point liquid limit determination have been critically re-examined. A simple one-point cone penetrometer method of computing liquid limit has been suggested and compared with other methods. Experimental data of Sherwood & Ryley (1970) have been employed for comparison of different cone penetration methods. Results indicate that, apart from mere statistical considerations, one-point methods have a strong scientific base on the uniqueness of modified flow line irrespective of soil type. Normalized flow line is obtained by normalization of water contents by liquid limit values thereby nullifying the effects of surface areas and associated physico-chemical factors that are otherwise reflected in different responses at macrolevel.Cet article traite de l'analyse de la limite de liquidité des sols, paramètre déductif universellement accepté. Cette analyse a été entreprise en premier lieu pour ré-examiner les méthodes à un point destinées à la détermination de la teneur en eau à la limite de liquidité. Il a été démontré par les caractéristiques fondamentales de sols et par des facteurs physico-chimiques associés que les résistances critiques à la rupture au cisaillement pour des teneurs en eau à la limite de liquidité résultent de l'équilibre des champs de forces et sont indépendantes du type de sol concerné. On peut donc constituer une base scientifique pour la détermination de la limite de liquidité par des méthodes à un point lesquelles, jusqu'alors, n'avaient été formulées que sur la base d'une analyse statistique des données. Les méthodes dont on dispose (Norman, 1959; Karlsson, 1961; Clayton & Jukes, 1978) pour la détermination de la limite de liquidité à un point font l'objet d'un ré-examen critique. Une simple méthode d'analyse à un point à l'aide d'un pénétromètre à cône pour le calcul de la limite de liquidité a été suggérée et comparée à d'autres méthodes. Les données expérimentales de Sherwood & Ryley (1970) ont été utilisées en vue de comparer différentes méthodes de pénétration par cône. En plus de considérations d'ordre purement statistque, les résultats montrent que les méthodes de détermination à un point constituent une base scientifique solide en raison du caractère unique de la ligne de courant modifiée, quel que soit le type de sol La ligne de courant normalisée est obtenue par la normalisation de la teneur en eau en faisant appel à des valeurs de limite de liquidité pour, de cette manière, annuler les effets des surfaces et des facteurs physico-chimiques associés qui sans cela se manifesteraient dans les différentes réponses au niveau macro.
Resumo:
Rapid screening tests and an appreciation of the simple genetic control of Alternaria brown spot (ABS) susceptibility have existed for many years, and yet the application of this knowledge to commercial-scale breeding programs has been limited. Detached leaf assays were first demonstrated more than 40 years ago and reliable data suggesting a single gene determining susceptibility has been emerging for at least 20 years. However it is only recently that the requirement for genetic resistance in new hybrids has become a priority, following increased disease prevalence in Australian mandarin production areas previously considered too dry for the pathogen. Almost all of the high-fruit-quality parents developed so far by the Queensland-based breeding program are susceptible to ABS necessitating the screening of their progeny to avoid commercialisation of susceptible hybrids. This is done effectively and efficiently by spraying 3-6 month old hybrid seedlings with a spore suspension derived from a toxin-producing field isolate of Alternaria alternate, then incubating these seedlings in a cool room at 25°C and high humidity for 5 days. Susceptible seedlings show clear disease symptoms and are discarded. Analysis of observed and expected segregation ratios loosely support the hypothesis for a single dominant gene for susceptibility, but do not rule out the possibility of alternative genetic models. After implementing the routine screening for ABS resistance for three seasons we now have more than 20,000 hybrids growing in field progeny blocks that have been screened for resistance to the ABS disease.
Resumo:
Elucidating the mechanisms responsible for the patterns of species abundance, diversity, and distribution within and across ecological systems is a fundamental research focus in ecology. Species abundance patterns are shaped in a convoluted way by interplays between inter-/intra-specific interactions, environmental forcing, demographic stochasticity, and dispersal. Comprehensive models and suitable inferential and computational tools for teasing out these different factors are quite limited, even though such tools are critically needed to guide the implementation of management and conservation strategies, the efficacy of which rests on a realistic evaluation of the underlying mechanisms. This is even more so in the prevailing context of concerns over climate change progress and its potential impacts on ecosystems. This thesis utilized the flexible hierarchical Bayesian modelling framework in combination with the computer intensive methods known as Markov chain Monte Carlo, to develop methodologies for identifying and evaluating the factors that control the structure and dynamics of ecological communities. These methodologies were used to analyze data from a range of taxa: macro-moths (Lepidoptera), fish, crustaceans, birds, and rodents. Environmental stochasticity emerged as the most important driver of community dynamics, followed by density dependent regulation; the influence of inter-specific interactions on community-level variances was broadly minor. This thesis contributes to the understanding of the mechanisms underlying the structure and dynamics of ecological communities, by showing directly that environmental fluctuations rather than inter-specific competition dominate the dynamics of several systems. This finding emphasizes the need to better understand how species are affected by the environment and acknowledge species differences in their responses to environmental heterogeneity, if we are to effectively model and predict their dynamics (e.g. for management and conservation purposes). The thesis also proposes a model-based approach to integrating the niche and neutral perspectives on community structure and dynamics, making it possible for the relative importance of each category of factors to be evaluated in light of field data.
Resumo:
In order to understand the physiological response of oilseed rape (Brassica napus L.) leaves to cadmium (Cd) stress and exploit the physiological mechanisms involved in Cd tolerance, macro-mineral and chlorophyll concentrations, reactive oxygen species (ROS) accumulation, activities of enzymatic antioxidants, nonenzymatic compounds metabolism, endogenous hormonal changes, and balance in leaves of oilseed rape exposed to 0, 100, or 200 μM CdSO4 were investigated. The results showed that under Cd exposure, Cd concentrations in the leaves continually increased while macro-minerals and chlorophyll concentrations decreased significantly. Meanwhile, with increased Cd stress, superoxide anion (O 2 • − ) production rate and hydrogen peroxide (H2O2) concentrations in the leaves increased significantly, which caused malondialdehyde (MDA) accumulation and oxidative stress. For scavenging excess accumulated ROS and alleviating oxidative injury in the leaves, the activity of enzymatic antioxidants, such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), was increased significantly at certain stress levels. However, with increased Cd stress, the antioxidant enzyme activities all showed a trend towards reduction. The nonenzymatic antioxidative compounds, such as proline and total soluble sugars, accumulated continuously with increased Cd stress to play a long-term role in scavenging ROS. In addition, ABA levels also increased continuously with Cd stress while ZR decreased and the ABA/ZR ratio increased, which might also be providing a protective role against Cd toxicity.
Resumo:
The prime aim of this PhD thesis is to contribute to the current body of knowledge on the out-of-plane performance of masonry walls through systematic investigation of the key parameters and provide insight into the design clauses of Australian Masonry Standard (AS3700-2011). The research work has been carried out through numerical simulation based on a 3D layered shell element model. The model demonstrated capability to simulate various forms of new and existing masonry systems commonly constructed in Australia such as unreinforced, internally and externally reinforced, confined and dry-stack masonry. In addition, the model simultaneously simulates in-plane and out-of-plane responses.