954 resultados para MONTE CARLO METHODS
Resumo:
Monte Carlo simulation methods involving splitting of Markov chains have been used in evaluation of multi-fold integrals in different application areas. We examine in this paper the performance of these methods in the context of evaluation of reliability integrals from the point of view of characterizing the sampling fluctuations. The methods discussed include the Au-Beck subset simulation, Holmes-Diaconis-Ross method, and generalized splitting algorithm. A few improvisations based on first order reliability method are suggested to select algorithmic parameters of the latter two methods. The bias and sampling variance of the alternative estimators are discussed. Also, an approximation to the sampling distribution of some of these estimators is obtained. Illustrative examples involving component and series system reliability analyses are presented with a view to bring out the relative merits of alternative methods. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Partial differential equations (PDEs) with multiscale coefficients are very difficult to solve due to the wide range of scales in the solutions. In the thesis, we propose some efficient numerical methods for both deterministic and stochastic PDEs based on the model reduction technique.
For the deterministic PDEs, the main purpose of our method is to derive an effective equation for the multiscale problem. An essential ingredient is to decompose the harmonic coordinate into a smooth part and a highly oscillatory part of which the magnitude is small. Such a decomposition plays a key role in our construction of the effective equation. We show that the solution to the effective equation is smooth, and could be resolved on a regular coarse mesh grid. Furthermore, we provide error analysis and show that the solution to the effective equation plus a correction term is close to the original multiscale solution.
For the stochastic PDEs, we propose the model reduction based data-driven stochastic method and multilevel Monte Carlo method. In the multiquery, setting and on the assumption that the ratio of the smallest scale and largest scale is not too small, we propose the multiscale data-driven stochastic method. We construct a data-driven stochastic basis and solve the coupled deterministic PDEs to obtain the solutions. For the tougher problems, we propose the multiscale multilevel Monte Carlo method. We apply the multilevel scheme to the effective equations and assemble the stiffness matrices efficiently on each coarse mesh grid. In both methods, the $\KL$ expansion plays an important role in extracting the main parts of some stochastic quantities.
For both the deterministic and stochastic PDEs, numerical results are presented to demonstrate the accuracy and robustness of the methods. We also show the computational time cost reduction in the numerical examples.
Resumo:
This paper provides a direct comparison of two stochastic optimisation techniques (Markov Chain Monte Carlo and Sequential Monte Carlo) when applied to the problem of conflict resolution and aircraft trajectory control in air traffic management. The two methods are then also compared to another existing technique of Mixed-Integer Linear Programming which is also popular in distributed control. © 2011 IFAC.
Resumo:
Very Long Baseline Interferometry (VLBI) polarisation observations of the relativistic jets from Active Galactic Nuclei (AGN) allow the magnetic field environment around the jet to be probed. In particular, multi-wavelength observations of AGN jets allow the creation of Faraday rotation measure maps which can be used to gain an insight into the magnetic field component of the jet along the line of sight. Recent polarisation and Faraday rotation measure maps of many AGN show possible evidence for the presence of helical magnetic fields. The detection of such evidence is highly dependent both on the resolution of the images and the quality of the error analysis and statistics used in the detection. This thesis focuses on the development of new methods for high resolution radio astronomy imaging in both of these areas. An implementation of the Maximum Entropy Method (MEM) suitable for multi-wavelength VLBI polarisation observations is presented and the advantage in resolution it possesses over the CLEAN algorithm is discussed and demonstrated using Monte Carlo simulations. This new polarisation MEM code has been applied to multi-wavelength imaging of the Active Galactic Nuclei 0716+714, Mrk 501 and 1633+382, in each case providing improved polarisation imaging compared to the case of deconvolution using the standard CLEAN algorithm. The first MEM-based fractional polarisation and Faraday-rotation VLBI images are presented, using these sources as examples. Recent detections of gradients in Faraday rotation measure are presented, including an observation of a reversal in the direction of a gradient further along a jet. Simulated observations confirming the observability of such a phenomenon are conducted, and possible explanations for a reversal in the direction of the Faraday rotation measure gradient are discussed. These results were originally published in Mahmud et al. (2013). Finally, a new error model for the CLEAN algorithm is developed which takes into account correlation between neighbouring pixels. Comparison of error maps calculated using this new model and Monte Carlo maps show striking similarities when the sources considered are well resolved, indicating that the method is correctly reproducing at least some component of the overall uncertainty in the images. The calculation of many useful quantities using this model is demonstrated and the advantages it poses over traditional single pixel calculations is illustrated. The limitations of the model as revealed by Monte Carlo simulations are also discussed; unfortunately, the error model does not work well when applied to compact regions of emission.
Resumo:
We describe a strategy for Markov chain Monte Carlo analysis of non-linear, non-Gaussian state-space models involving batch analysis for inference on dynamic, latent state variables and fixed model parameters. The key innovation is a Metropolis-Hastings method for the time series of state variables based on sequential approximation of filtering and smoothing densities using normal mixtures. These mixtures are propagated through the non-linearities using an accurate, local mixture approximation method, and we use a regenerating procedure to deal with potential degeneracy of mixture components. This provides accurate, direct approximations to sequential filtering and retrospective smoothing distributions, and hence a useful construction of global Metropolis proposal distributions for simulation of posteriors for the set of states. This analysis is embedded within a Gibbs sampler to include uncertain fixed parameters. We give an example motivated by an application in systems biology. Supplemental materials provide an example based on a stochastic volatility model as well as MATLAB code.
Resumo:
To test the validity of classical trajectory and perturbative quantal methods for electron-impact ionization of H-like ions from excited states, we have performed advanced close-coupling calculations of ionization from excited states in H, Li 2+ and B 4+ using the R -matrix with pseudo states and the time-dependent close-coupling methods. Comparisons with our classical trajectory Monte Carlo (CTMC) and distorted-wave (DW) calculations show that the CTMC method is more accurate than the DW method for H, but does not improve with n and grows substantially worse with Z , while the DW method improves with Z and grows worse with n .
Resumo:
This work presents new, efficient Markov chain Monte Carlo (MCMC) simulation methods for statistical analysis in various modelling applications. When using MCMC methods, the model is simulated repeatedly to explore the probability distribution describing the uncertainties in model parameters and predictions. In adaptive MCMC methods based on the Metropolis-Hastings algorithm, the proposal distribution needed by the algorithm learns from the target distribution as the simulation proceeds. Adaptive MCMC methods have been subject of intensive research lately, as they open a way for essentially easier use of the methodology. The lack of user-friendly computer programs has been a main obstacle for wider acceptance of the methods. This work provides two new adaptive MCMC methods: DRAM and AARJ. The DRAM method has been built especially to work in high dimensional and non-linear problems. The AARJ method is an extension to DRAM for model selection problems, where the mathematical formulation of the model is uncertain and we want simultaneously to fit several different models to the same observations. The methods were developed while keeping in mind the needs of modelling applications typical in environmental sciences. The development work has been pursued while working with several application projects. The applications presented in this work are: a winter time oxygen concentration model for Lake Tuusulanjärvi and adaptive control of the aerator; a nutrition model for Lake Pyhäjärvi and lake management planning; validation of the algorithms of the GOMOS ozone remote sensing instrument on board the Envisat satellite of European Space Agency and the study of the effects of aerosol model selection on the GOMOS algorithm.
Resumo:
Euclidean distance matrix analysis (EDMA) methods are used to distinguish whether or not significant difference exists between conformational samples of antibody complementarity determining region (CDR) loops, isolated LI loop and LI in three-loop assembly (LI, L3 and H3) obtained from Monte Carlo simulation. After the significant difference is detected, the specific inter-Ca distance which contributes to the difference is identified using EDMA.The estimated and improved mean forms of the conformational samples of isolated LI loop and LI loop in three-loop assembly, CDR loops of antibody binding site, are described using EDMA and distance geometry (DGEOM). To the best of our knowledge, it is the first time the EDMA methods are used to analyze conformational samples of molecules obtained from Monte Carlo simulations. Therefore, validations of the EDMA methods using both positive control and negative control tests for the conformational samples of isolated LI loop and LI in three-loop assembly must be done. The EDMA-I bootstrap null hypothesis tests showed false positive results for the comparison of six samples of the isolated LI loop and true positive results for comparison of conformational samples of isolated LI loop and LI in three-loop assembly. The bootstrap confidence interval tests revealed true negative results for comparisons of six samples of the isolated LI loop, and false negative results for the conformational comparisons between isolated LI loop and LI in three-loop assembly. Different conformational sample sizes are further explored by combining the samples of isolated LI loop to increase the sample size, or by clustering the sample using self-organizing map (SOM) to narrow the conformational distribution of the samples being comparedmolecular conformations. However, there is no improvement made for both bootstrap null hypothesis and confidence interval tests. These results show that more work is required before EDMA methods can be used reliably as a method for comparison of samples obtained by Monte Carlo simulations.
Resumo:
Los métodos disponibles para realizar análisis de descomposición que se pueden aplicar cuando los datos son completamente observados, no son válidos cuando la variable de interés es censurada. Esto puede explicar la escasez de este tipo de ejercicios considerando variables de duración, las cuales se observan usualmente bajo censura. Este documento propone un método del tipo Oaxaca-Blinder para descomponer diferencias en la media en el contexto de datos censurados. La validez de dicho método radica en la identificación y estimación de la distribución conjunta de la variable de duración y un conjunto de covariables. Adicionalmente, se propone un método más general que permite descomponer otros funcionales de interés como la mediana o el coeficiente de Gini, el cual se basa en la especificación de la función de distribución condicional de la variable de duración dado un conjunto de covariables. Con el fin de evaluar el desempeño de dichos métodos, se realizan experimentos tipo Monte Carlo. Finalmente, los métodos propuestos son aplicados para analizar las brechas de género en diferentes características de la duración del desempleo en España, tales como la duración media, la probabilidad de ser desempleado de largo plazo y el coeficiente de Gini. Los resultados obtenidos permiten concluir que los factores diferentes a las características observables, tales como capital humano o estructura del hogar, juegan un papel primordial para explicar dichas brechas.
Resumo:
We have estimated the speed and direction of propagation of a number of Coronal Mass Ejections (CMEs) using single-spacecraft data from the STEREO Heliospheric Imager (HI) wide-field cameras. In general, these values are in good agreement with those predicted by Thernisien, Vourlidas, and Howard in Solar Phys. 256, 111 -aEuro parts per thousand 130 (2009) using a forward modelling method to fit CMEs imaged by the STEREO COR2 coronagraphs. The directions of the CMEs predicted by both techniques are in good agreement despite the fact that many of the CMEs under study travel in directions that cause them to fade rapidly in the HI images. The velocities estimated from both techniques are in general agreement although there are some interesting differences that may provide evidence for the influence of the ambient solar wind on the speed of CMEs. The majority of CMEs with a velocity estimated to be below 400 km s(-1) in the COR2 field of view have higher estimated velocities in the HI field of view, while, conversely, those with COR2 velocities estimated to be above 400 km s(-1) have lower estimated HI velocities. We interpret this as evidence for the deceleration of fast CMEs and the acceleration of slower CMEs by interaction with the ambient solar wind beyond the COR2 field of view. We also show that the uncertainties in our derived parameters are influenced by the range of elongations over which each CME can be tracked. In order to reduce the uncertainty in the predicted arrival time of a CME at 1 Astronomical Unit (AU) to within six hours, the CME needs to be tracked out to at least 30 degrees elongation. This is in good agreement with predictions of the accuracy of our technique based on Monte Carlo simulations.
Resumo:
Modelling the interaction of terahertz(THz) radiation with biological tissueposes many interesting problems. THzradiation is neither obviously described byan electric field distribution or anensemble of photons and biological tissueis an inhomogeneous medium with anelectronic permittivity that is bothspatially and frequency dependent making ita complex system to model.A three-layer system of parallel-sidedslabs has been used as the system throughwhich the passage of THz radiation has beensimulated. Two modelling approaches havebeen developed a thin film matrix model anda Monte Carlo model. The source data foreach of these methods, taken at the sametime as the data recorded to experimentallyverify them, was a THz spectrum that hadpassed though air only.Experimental verification of these twomodels was carried out using athree-layered in vitro phantom. Simulatedtransmission spectrum data was compared toexperimental transmission spectrum datafirst to determine and then to compare theaccuracy of the two methods. Goodagreement was found, with typical resultshaving a correlation coefficient of 0.90for the thin film matrix model and 0.78 forthe Monte Carlo model over the full THzspectrum. Further work is underway toimprove the models above 1 THz.
Resumo:
We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the almost sure convergence of these decomposition methods when the relatively complete recourse assumption holds. We also prove the almost sure convergence of these algorithms when applied to risk-averse multistage stochastic linear programs that do not satisfy the relatively complete recourse assumption. The analysis is first done assuming the underlying stochastic process is interstage independent and discrete, with a finite set of possible realizations at each stage. We then indicate two ways of extending the methods and convergence analysis to the case when the process is interstage dependent.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This thesis is based on five papers addressing variance reduction in different ways. The papers have in common that they all present new numerical methods. Paper I investigates quantitative structure-retention relationships from an image processing perspective, using an artificial neural network to preprocess three-dimensional structural descriptions of the studied steroid molecules. Paper II presents a new method for computing free energies. Free energy is the quantity that determines chemical equilibria and partition coefficients. The proposed method may be used for estimating, e.g., chromatographic retention without performing experiments. Two papers (III and IV) deal with correcting deviations from bilinearity by so-called peak alignment. Bilinearity is a theoretical assumption about the distribution of instrumental data that is often violated by measured data. Deviations from bilinearity lead to increased variance, both in the data and in inferences from the data, unless invariance to the deviations is built into the model, e.g., by the use of the method proposed in paper III and extended in paper IV. Paper V addresses a generic problem in classification; namely, how to measure the goodness of different data representations, so that the best classifier may be constructed. Variance reduction is one of the pillars on which analytical chemistry rests. This thesis considers two aspects on variance reduction: before and after experiments are performed. Before experimenting, theoretical predictions of experimental outcomes may be used to direct which experiments to perform, and how to perform them (papers I and II). After experiments are performed, the variance of inferences from the measured data are affected by the method of data analysis (papers III-V).
Resumo:
The goal of this thesis is the acceleration of numerical calculations of QCD observables, both at leading order and next–to–leading order in the coupling constant. In particular, the optimization of helicity and spin summation in the context of VEGAS Monte Carlo algorithms is investigated. In the literature, two such methods are mentioned but without detailed analyses. Only one of these methods can be used at next–to–leading order. This work presents a total of five different methods that replace the helicity sums with a Monte Carlo integration. This integration can be combined with the existing phase space integral, in the hope that this causes less overhead than the complete summation. For three of these methods, an extension to existing subtraction terms is developed which is required to enable next–to–leading order calculations. All methods are analyzed with respect to efficiency, accuracy, and ease of implementation before they are compared with each other. In this process, one method shows clear advantages in relation to all others.