999 resultados para MODIFIED POLYCARBONATE
Resumo:
Structural and magnetic properties of thin Mn films on the Fe(001) surface have been investigated by a combination of photoelectron spectroscopy and computer simulation in the temperature range 300 Kless than or equal toTless than or equal to750 K. Room-temperature as deposited Mn overlayers are found to be ferromagnetic up to 2.5-monolayer (ML) coverage, with a magnetic moment parallel to that of the iron substrate. The Mn atomic moment decreases with increasing coverage, and thicker samples (4-ML and 4.5-ML coverage) are antiferromagnetic. Photoemission measurements performed while the system temperature is rising at constant rate (dT/dtsimilar to0.5 K/s) detect the first signs of Mn-Fe interdiffusion at T=450 K, and reveal a broad temperature range (610 Kless than or equal toTless than or equal to680 K) in which the interface appears to be stable. Interdiffusion resumes at Tgreater than or equal to680 K. Molecular dynamics and Monte Carlo simulations allow us to attribute the stability plateau at 610 Kless than or equal toTless than or equal to680 K to the formation of a single-layer MnFe surface alloy with a 2x2 unit cell and a checkerboard distribution of Mn and Fe atoms. X-ray-absorption spectroscopy and analysis of the dichroic signal show that the alloy has a ferromagnetic spin structure, collinear with that of the substrate. The magnetic moments of Mn and Fe atoms in the alloy are estimated to be 0.8mu(B) and 1.1mu(B), respectively.
Resumo:
Epoxides and phosphites are often used as additives to stabilize the properties of polymers, including bisphenol A polycarbonate (BPA-PC). We describe density functional (DF) calculations of the reactions of cyclohexene oxide (CHO, cyclohexane epoxide) and phosphites with chain segments of BPA-PC, with the aim of identifying possible reaction paths and energy barriers. The reactions of CHO with the OH-terminated PC chains and with the carbonate group are exothermic, although there is an energy barrier in each case of more than 10 kcal/mol. A comparison of results for different CHO isomers demonstrates the importance of steric effects. The reactions between the same groups of the PC chain and the phosphites 2-[2,4-bis(tert-butyl)phenoxy]-5,5-dimethyl-1,3,2-dioxaphosphorinane] (BPDD) and trimethyl phosphite (TMP), and their phosphonate isomers are characterized by large energy barriers.
Resumo:
Density functional calculations with simulated annealing have been used to study the reactions of chains of bisphenol A polycarbonate (BPA-PC) with sodium phenoxide (NaOPh), diphenyl carbonate (DPC), and tetraphenylphosphonium phenoxide (PPh4OPh). These calculations extend our work on the reactions of LiOPh, NaOPh, and phenol with the cyclic tetramer of BPA-PC. We study, in particular, chain growth catalyzed by NaOPh and PPh4OH. The energy barriers for reactions with PPh4OPh are somewhat larger than those involving LiOPh and NaOPh, but they are significantly lower than those involving phenol (HOPh), due in part to the collective rearrangement of phenyl groups in the reacting molecules. We discuss in the Appendix the bonds between alkali metal atoms (Na in the present calculations) and other atoms (here oxygen) that are analogous to the more familiar "hydrogen bonds".
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) is an important incretin hormone, which potentiates glucose-induced insulin secretion. Antihyperglycaemic actions of GIP provide significant potential in Type 11 diabetes therapy. However, inactivation of GIP by the enzyme dipeptidyl peptidase IV (DPP IV) and its consequent short circulating half-life limit its therapeutic use. Therefore two novel Tyr(1)-Modified analogues of GIP, N-Fmoc-GIP (where Fmoc is 9-fluorenylmethoxycarbonyl) and N-palmitate-GIP, were synthesized and tested for metabolic stability and biological activity. Both GIP analogues were resistant to degradation by DPP IV and human plasma. In Chinese hamster lung (CHL) cells expressing the cloned human GIP receptor, both analogues exhibited a 2-fold increase in cAMP-generating potency compared with native GIP (EC50 values of 9.4, 10.0 and 18.2 nM respectively). Using clonal BRIN-BD11 cells, both analogues demonstrated strong insulinotropic activity compared with native GIP (P <0.01 to P <0.001). In obese diabetic (ob/ob) mice, administration of N-Fmoc-GIP or N-palmitate-GIP (25 nmol/kg) together with glucose (18 mmol/kg) significantly reduced the peak 15 min glucose excursion (1.4- and 1.5-fold respectively; P <0.05 to P <0.01) compared with glucose alone. The area under the curve (AUC) for glucose was significantly lower after administration of either analogue compared with glucose administered alone or in combination with native GIP (1.5-fold; P <0.05). This was associated with a significantly greater AUC for insulin (2.1-fold; P <0.001) for both analogues compared with native GIP. A similar pattern of in vivo responsiveness was evident in lean control mice. These data indicate that novel N-terminal Tyr(1) modification of GIP with an Fmoc or palmitate group confers resistance to degradation by DPP IV in plasma, which is reflected by increased in vitro potency and greater insulinotropic and antihyperglycaemic activities in an animal model of Type 11 diabetes mellitus.