983 resultados para MATHEMATICS, APPLIED
Resumo:
The purpose of this study was to identify the pedagogical knowledge relevant to the successful completion of a pie chart item. This purpose was achieved through the identification of the essential fluencies that 12–13-year-olds required for the successful solution of a pie chart item. Fluency relates to ease of solution and is particularly important in mathematics because it impacts on performance. Although the majority of students were successful on this multiple choice item, there was considerable divergence in the strategies they employed. Approximately two-thirds of the students employed efficient multiplicative strategies, which recognised and capitalised on the pie chart as a proportional representation. In contrast, the remaining one-third of students used a less efficient additive strategy that failed to capitalise on the representation of the pie chart. The results of our investigation of students’ performance on the pie chart item during individual interviews revealed that five distinct fluencies were involved in the solution process: conceptual (understanding the question), linguistic (keywords), retrieval (strategy selection), perceptual (orientation of a segment of the pie chart) and graphical (recognising the pie chart as a proportional representation). In addition, some students exhibited mild disfluencies corresponding to the five fluencies identified above. Three major outcomes emerged from the study. First, a model of knowledge of content and students for pie charts was developed. This model can be used to inform instruction about the pie chart and guide strategic support for students. Second, perceptual and graphical fluency were identified as two aspects of the curriculum, which should receive a greater emphasis in the primary years, due to their importance in interpreting pie charts. Finally, a working definition of fluency in mathematics was derived from students’ responses to the pie chart item.
Resumo:
In this chapter we review studies of the engagement of students in design projects that emphasise integration of technology practice and the enabling sciences, which include physics and mathematics. We give special attention to affective and conceptual outcomes from innovative interventions of design projects. This is important work because of growing international concern that demand for professionals with technological expertise is increasing rapidly, while the supply of students willing to undertake the rigors of study in the enabling sciences is proportionally reducing (e.g., Barringtion, 2006; Hannover & Kessels, 2004; Yurtseven, 2002). The net effect is that the shortage in qualified workers is having a detrimental effect upon economic and social potential in Westernised countries (e.g., Department of Education, Science and Training [DEST], 2003; National Numeracy Review Panel and National Numeracy Review Secretarial, 2007; Yurtseven, 2002). Interestingly, this trend is reversed in developing economies including China and India (Anderson & Gilbride, 2003).
Resumo:
Despite the increasing popularity of social networking websites (SNWs), very little is known about the psychosocial variables which predict people’s use of these websites. The present study used an extended model of the theory of planned behaviour (TPB), including the additional variables of self-identity and belongingness, to predict high level SNW use intentions and behaviour in a sample of young people aged between 17 and 24 years. Additional analayses examined the impact of self-identity and belongingness on young people’s addictive tendencies towards SNWs. University students (N = 233) completed measures of the standard TPB constructs (attitude, subjective norm and perceived behavioural control), the additional predictor variables (self-identity and belongingness), demographic variables (age, gender, and past behaviour) and addictive tendencies. One week later, they reported their engagement in high level SNW use during the previous week. Regression analyses partially supported the TPB, as attitude and subjective norm signficantly predicted intentions to engage in high level SNW use with intention signficantly predicting behaviour. Self-identity, but not belongingness, signficantly contributed to the prediction of intention, and, unexpectedly, behaviour. Past behaviour also signficantly predicted intention and behaviour. Self-identity and belongingness signficantly predicted addictive tendencies toward SNWs. Overall, the present study revealed that high level SNW use is influenced by attitudinal, normative, and self-identity factors, findings which can be used to inform strategies that aim to modify young people’s high levels of use or addictive tendencies for SNWs.
Resumo:
This paper compares the performances of two different optimisation techniques for solving inverse problems; the first one deals with the Hierarchical Asynchronous Parallel Evolutionary Algorithms software (HAPEA) and the second is implemented with a game strategy named Nash-EA. The HAPEA software is based on a hierarchical topology and asynchronous parallel computation. The Nash-EA methodology is introduced as a distributed virtual game and consists of splitting the wing design variables - aerofoil sections - supervised by players optimising their own strategy. The HAPEA and Nash-EA software methodologies are applied to a single objective aerodynamic ONERA M6 wing reconstruction. Numerical results from the two approaches are compared in terms of the quality of model and computational expense and demonstrate the superiority of the distributed Nash-EA methodology in a parallel environment for a similar design quality.
Resumo:
This study considers the solution of a class of linear systems related with the fractional Poisson equation (FPE) (−∇2)α/2φ=g(x,y) with nonhomogeneous boundary conditions on a bounded domain. A numerical approximation to FPE is derived using a matrix representation of the Laplacian to generate a linear system of equations with its matrix A raised to the fractional power α/2. The solution of the linear system then requires the action of the matrix function f(A)=A−α/2 on a vector b. For large, sparse, and symmetric positive definite matrices, the Lanczos approximation generates f(A)b≈β0Vmf(Tm)e1. This method works well when both the analytic grade of A with respect to b and the residual for the linear system are sufficiently small. Memory constraints often require restarting the Lanczos decomposition; however this is not straightforward in the context of matrix function approximation. In this paper, we use the idea of thick-restart and adaptive preconditioning for solving linear systems to improve convergence of the Lanczos approximation. We give an error bound for the new method and illustrate its role in solving FPE. Numerical results are provided to gauge the performance of the proposed method relative to exact analytic solutions.
Resumo:
In this paper, we consider a modified anomalous subdiffusion equation with a nonlinear source term for describing processes that become less anomalous as time progresses by the inclusion of a second fractional time derivative acting on the diffusion term. A new implicit difference method is constructed. The stability and convergence are discussed using a new energy method. Finally, some numerical examples are given. The numerical results demonstrate the effectiveness of theoretical analysis
Resumo:
In this paper, we consider a variable-order fractional advection-diffusion equation with a nonlinear source term on a finite domain. Explicit and implicit Euler approximations for the equation are proposed. Stability and convergence of the methods are discussed. Moreover, we also present a fractional method of lines, a matrix transfer technique, and an extrapolation method for the equation. Some numerical examples are given, and the results demonstrate the effectiveness of theoretical analysis.
Resumo:
Anomalous dynamics in complex systems have gained much interest in recent years. In this paper, a two-dimensional anomalous subdiffusion equation (2D-ASDE) is considered. Two numerical methods for solving the 2D-ASDE are presented. Their stability, convergence and solvability are discussed. A new multivariate extrapolation is introduced to improve the accuracy. Finally, numerical examples are given to demonstrate the effectiveness of the schemes and confirm the theoretical analysis.
Resumo:
In this paper, the numerical simulation of the 3D seepage flow with fractional derivatives in porous media is considered under two special cases: non-continued seepage flow in uniform media (NCSFUM) and continued seepage flow in non-uniform media (CSF-NUM). A fractional alternating direction implicit scheme (FADIS) for the NCSF-UM and a modified Douglas scheme (MDS) for the CSF-NUM are proposed. The stability, consistency and convergence of both FADIS and MDS in a bounded domain are discussed. A method for improving the speed of convergence by Richardson extrapolation for the MDS is also presented. Finally, numerical results are presented to support our theoretical analysis.
Resumo:
In this paper, we consider the variable-order nonlinear fractional diffusion equation View the MathML source where xRα(x,t) is a generalized Riesz fractional derivative of variable order View the MathML source and the nonlinear reaction term f(u,x,t) satisfies the Lipschitz condition |f(u1,x,t)-f(u2,x,t)|less-than-or-equals, slantL|u1-u2|. A new explicit finite-difference approximation is introduced. The convergence and stability of this approximation are proved. Finally, some numerical examples are provided to show that this method is computationally efficient. The proposed method and techniques are applicable to other variable-order nonlinear fractional differential equations.
Resumo:
In this paper, we consider the following non-linear fractional reaction–subdiffusion process (NFR-SubDP): Formula where f(u, x, t) is a linear function of u, the function g(u, x, t) satisfies the Lipschitz condition and 0Dt1–{gamma} is the Riemann–Liouville time fractional partial derivative of order 1 – {gamma}. We propose a new computationally efficient numerical technique to simulate the process. Firstly, the NFR-SubDP is decoupled, which is equivalent to solving a non-linear fractional reaction–subdiffusion equation (NFR-SubDE). Secondly, we propose an implicit numerical method to approximate the NFR-SubDE. Thirdly, the stability and convergence of the method are discussed using a new energy method. Finally, some numerical examples are presented to show the application of the present technique. This method and supporting theoretical results can also be applied to fractional integrodifferential equations.
Resumo:
In this paper, a two-dimensional non-continuous seepage flow with fractional derivatives (2D-NCSF-FD) in uniform media is considered, which has modified the well known Darcy law. Using the relationship between Riemann-Liouville and Grunwald-Letnikov fractional derivatives, two modified alternating direction methods: a modified alternating direction implicit Euler method and a modified Peaceman-Rachford method, are proposed for solving the 2D-NCSF-FD in uniform media. The stability and consistency, thus convergence of the two methods in a bounded domain are discussed. Finally, numerical results are given.
Resumo:
Privacy enhancing protocols (PEPs) are a family of protocols that allow secure exchange and management of sensitive user information. They are important in preserving users’ privacy in today’s open environment. Proof of the correctness of PEPs is necessary before they can be deployed. However, the traditional provable security approach, though well established for verifying cryptographic primitives, is not applicable to PEPs. We apply the formal method of Coloured Petri Nets (CPNs) to construct an executable specification of a representative PEP, namely the Private Information Escrow Bound to Multiple Conditions Protocol (PIEMCP). Formal semantics of the CPN specification allow us to reason about various security properties of PIEMCP using state space analysis techniques. This investigation provides us with preliminary insights for modeling and verification of PEPs in general, demonstrating the benefit of applying the CPN-based formal approach to proving the correctness of PEPs.