905 resultados para Longitudinal Change


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: High-resolution magnetic resonance (MR) imaging has been used for MR imaging-based structural stress analysis of atherosclerotic plaques. The biomechanical stress profile of stable plaques has been observed to differ from that of unstable plaques; however, the role that structural stresses play in determining plaque vulnerability remains speculative. Methods: A total of 61 patients with previous history of symptomatic carotid artery disease underwent carotid plaque MR imaging. Plaque components of the index artery such as fibrous tissue, lipid content and plaque haemorrhage (PH) were delineated and used for finite element analysis-based maximum structural stress (M-C Stress) quantification. These patients were followed up for 2 years. The clinical end point was occurrence of an ischaemic cerebrovascular event. The association of the time to the clinical end point with plaque morphology and M-C Stress was analysed. Results: During a median follow-up duration of 514 days, 20% of patients (n=12) experienced an ischaemic event in the territory of the index carotid artery. Cox regression analysis indicated that M-C Stress (hazard ratio (HR): 12.98 (95% confidence interval (CI): 1.32-26.67, pZ0.02), fibrous cap (FC) disruption (HR: 7.39 (95% CI: 1.61e33.82), p Z 0.009) and PH (HR: 5.85 (95% CI: 1.27e26.77), p Z 0.02) are associated with the development of subsequent cerebrovascular events. Plaques associated with future events had higher M-C Stress than those which had remained asymptomatic (median (interquartile range, IQR): 330 kPa (229e494) vs. 254 kPa (166-290), p Z0.04). Conclusions: High biomechanical structural stresses, in addition to FC rupture and PH, are associated with subsequent cerebrovascular events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Aneurysm expansion rate is an important indicator of the potential risk of abdominal aortic aneurysm (AAA) rupture. Stress within the AAA wall is also thought to be a trigger for its rupture. However, the association between aneurysm wall stresses and expansion of AAA is unclear. Methods and Results Forty-four patients with AAAs were included in this longitudinal follow-up study. They were assessed by serial abdominal ultrasonography and computed tomography scans if a critical size was reached or a rapid expansion occurred. Patient-specific 3-dimensional AAA geometries were reconstructed from the follow-up computed tomography images. Structural analysis was performed to calculate the wall stresses of the AAA models at both baseline and final visit. A nonlinear large-strain finite element method was used to compute the wall-stress distribution. The relationship between wall stresses and expansion rate was investigated. Slowly and rapidly expanding aneurysms had comparable baseline maximum diameters (median, 4.35 cm [interquartile range, 4.12 to 5.0 cm] versus 4.6 cm [interquartile range, 4.2 to 5.0 cm]; P=0.32). Rapidly expanding AAAs had significantly higher shoulder stresses than slowly expanding AAAs (median, 300 kPa [interquartile range, 280 to 320 kPa] versus 225 kPa [interquartile range, 211 to 249 kPa]; P=0.0001). A good correlation between shoulder stress at baseline and expansion rate was found (r=0.71; P=0.0001). Conclusion A higher shoulder stress was found to have an association with a rapidly expanding AAA. Therefore, it may be useful for estimating the expansion of AAAs and improve risk stratification of patients with AAAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth rate of abdominal aortic aneurysm (AAA) is thought to be an important indicator of the potential risk of rupture. Wall stress is also thought to be a trigger for its rupture. However, stress change during the expansion of an AAA is unclear. Forty-four patients with AAAs were included in this longitudinal follow-up study. They were assessed by serial abdominal ultrasonography and computerized tomography (CT) scans if a critical size was reached or a rapid expansion occurred. Patient-specific 3-dimensional AAA geometries were reconstructed from the follow-up CT images. Structural analysis was performed to calculate the wall stresses of the AAA models at both baseline and final visit. A non-linear large-strain finite element method was used to compute the wall stress distribution. The average growth rate was 0.66cm/year (range 0-1.32 cm/year). A significantly positive correlation between shoulder tress at baseline and growth rate was found (r=0.342; p=0.02). A higher shoulder stress is associated with a rapidly expanding AAA. Therefore, it may be useful for estimating the growth expansion of AAAs and further risk stratification of patients with AAAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal boundary layer along an isothermal cylinder in a porous 3edium is studied numerically by a finite difference scheme and also using the method of extended perturbation series. The series in terms of the transverse curvature parameter ξ extended to seven terms and is subsequently improved by applying the Shanks transformation twice and thrice, respectively. Results for heat transfer characteristics are found in very good agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drawing on insights from feminist scholars and activists, this article examines the dialectical relationship between climate change and the social construction of gender. We examine in detail how gender inequalities associated with capitalism, particularly in its latest Neoliberal incarnation, help to produce global warming, as well as to produce gendered vulnerabilities and unequal impacts. After a brief review of past successes and failures to integrate gender concerns into climate change debates and policies, we suggest several criminological interventions that are compatible with a feminist perspective on climate change. We argue that a stronger criminological focus on the global political economy, particularly on the gendered inequalities it produces, is analytically essential for understanding both the etiology and harmful consequences of climate change. Simultaneously, we urge critical criminologists to employ the tools of our trade to take a more proactive role in the social construction of a just and sustainable society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selection criteria and misspecification tests for the intra-cluster correlation structure (ICS) in longitudinal data analysis are considered. In particular, the asymptotical distribution of the correlation information criterion (CIC) is derived and a new method for selecting a working ICS is proposed by standardizing the selection criterion as the p-value. The CIC test is found to be powerful in detecting misspecification of the working ICS structures, while with respect to the working ICS selection, the standardized CIC test is also shown to have satisfactory performance. Some simulation studies and applications to two real longitudinal datasets are made to illustrate how these criteria and tests might be useful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a linear quantile regression analysis method for longitudinal data that combines the between- and within-subject estimating functions, which incorporates the correlations between repeated measurements. Therefore, the proposed method results in more efficient parameter estimation relative to the estimating functions based on an independence working model. To reduce computational burdens, the induced smoothing method is introduced to obtain parameter estimates and their variances. Under some regularity conditions, the estimators derived by the induced smoothing method are consistent and have asymptotically normal distributions. A number of simulation studies are carried out to evaluate the performance of the proposed method. The results indicate that the efficiency gain for the proposed method is substantial especially when strong within correlations exist. Finally, a dataset from the audiology growth research is used to illustrate the proposed methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modeling paradigm is proposed for covariate, variance and working correlation structure selection for longitudinal data analysis. Appropriate selection of covariates is pertinent to correct variance modeling and selecting the appropriate covariates and variance function is vital to correlation structure selection. This leads to a stepwise model selection procedure that deploys a combination of different model selection criteria. Although these criteria find a common theoretical root based on approximating the Kullback-Leibler distance, they are designed to address different aspects of model selection and have different merits and limitations. For example, the extended quasi-likelihood information criterion (EQIC) with a covariance penalty performs well for covariate selection even when the working variance function is misspecified, but EQIC contains little information on correlation structures. The proposed model selection strategies are outlined and a Monte Carlo assessment of their finite sample properties is reported. Two longitudinal studies are used for illustration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The method of generalized estimating equations (GEEs) provides consistent estimates of the regression parameters in a marginal regression model for longitudinal data, even when the working correlation model is misspecified (Liang and Zeger, 1986). However, the efficiency of a GEE estimate can be seriously affected by the choice of the working correlation model. This study addresses this problem by proposing a hybrid method that combines multiple GEEs based on different working correlation models, using the empirical likelihood method (Qin and Lawless, 1994). Analyses show that this hybrid method is more efficient than a GEE using a misspecified working correlation model. Furthermore, if one of the working correlation structures correctly models the within-subject correlations, then this hybrid method provides the most efficient parameter estimates. In simulations, the hybrid method's finite-sample performance is superior to a GEE under any of the commonly used working correlation models and is almost fully efficient in all scenarios studied. The hybrid method is illustrated using data from a longitudinal study of the respiratory infection rates in 275 Indonesian children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In analysis of longitudinal data, the variance matrix of the parameter estimates is usually estimated by the 'sandwich' method, in which the variance for each subject is estimated by its residual products. We propose smooth bootstrap methods by perturbing the estimating functions to obtain 'bootstrapped' realizations of the parameter estimates for statistical inference. Our extensive simulation studies indicate that the variance estimators by our proposed methods can not only correct the bias of the sandwich estimator but also improve the confidence interval coverage. We applied the proposed method to a data set from a clinical trial of antibiotics for leprosy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fully developed pulsatile flow in a circular rigid tube is analysed by a microcontinuum approach. Solutions for radial variation of axial velocity and cell rotational velocity across the tube are obtained using the momentum integral method. Simplified forms of the solutions are presented for the relevant physiological data. Marked deviations in the results are observed when compared to a Newtonian fluid model. It is interesting to see that there is sufficient reduction in the mass flow rate, phase lag and friction due to the micropolar character of the fluid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the analysis of longitudinal data when the covariance function is modeled by additional parameters to the mean parameters. In general, inconsistent estimators of the covariance (variance/correlation) parameters will be produced when the "working" correlation matrix is misspecified, which may result in great loss of efficiency of the mean parameter estimators (albeit the consistency is preserved). We consider using different "Working" correlation models for the variance and the mean parameters. In particular, we find that an independence working model should be used for estimating the variance parameters to ensure their consistency in case the correlation structure is misspecified. The designated "working" correlation matrices should be used for estimating the mean and the correlation parameters to attain high efficiency for estimating the mean parameters. Simulation studies indicate that the proposed algorithm performs very well. We also applied different estimation procedures to a data set from a clinical trial for illustration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robust methods are useful in making reliable statistical inferences when there are small deviations from the model assumptions. The widely used method of the generalized estimating equations can be "robustified" by replacing the standardized residuals with the M-residuals. If the Pearson residuals are assumed to be unbiased from zero, parameter estimators from the robust approach are asymptotically biased when error distributions are not symmetric. We propose a distribution-free method for correcting this bias. Our extensive numerical studies show that the proposed method can reduce the bias substantially. Examples are given for illustration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The approach of generalized estimating equations (GEE) is based on the framework of generalized linear models but allows for specification of a working matrix for modeling within-subject correlations. The variance is often assumed to be a known function of the mean. This article investigates the impacts of misspecifying the variance function on estimators of the mean parameters for quantitative responses. Our numerical studies indicate that (1) correct specification of the variance function can improve the estimation efficiency even if the correlation structure is misspecified; (2) misspecification of the variance function impacts much more on estimators for within-cluster covariates than for cluster-level covariates; and (3) if the variance function is misspecified, correct choice of the correlation structure may not necessarily improve estimation efficiency. We illustrate impacts of different variance functions using a real data set from cow growth.