943 resultados para Linear system solve
Resumo:
We compare the Q parameter obtained from scalar, semi-analytical and full vector models for realistic transmission systems. One set of systems is operated in the linear regime, while another is using solitons at high peak power. We report in detail on the different results obtained for the same system using different models. Polarisation mode dispersion is also taken into account and a novel method to average Q parameters over several independent simulation runs is described. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Cascaded multilevel inverters-based Static Var Generators (SVGs) are FACTS equipment introduced for active and reactive power flow control. They eliminate the need for zigzag transformers and give a fast response. However, with regard to their application for flicker reduction in using Electric Arc Furnace (EAF), the existing multilevel inverter-based SVGs suffer from the following disadvantages. (1) To control the reactive power, an off-line calculation of Modulation Index (MI) is required to adjust the SVG output voltage. This slows down the transient response to the changes of reactive power; and (2) Random active power exchange may cause unbalance to the voltage of the d.c. link (HBI) capacitor when the reactive power control is done by adjusting the power angle d alone. To resolve these problems, a mathematical model of 11-level cascaded SVG, was developed. A new control strategy involving both MI (modulation index) and power angle (d) is proposed. A selected harmonics elimination method (SHEM) is taken for switching pattern calculations. To shorten the response time and simplify the controls system, feed forward neural networks are used for on-line computation of the switching patterns instead of using look-up tables. The proposed controller updates the MI and switching patterns once each line-cycle according to the sampled reactive power Qs. Meanwhile, the remainder reactive power (compensated by the MI) and the reactive power variations during the line-cycle will be continuously compensated by adjusting the power angles, d. The scheme senses both variables MI and d, and takes action through the inverter switching angle, qi. As a result, the proposed SVG is expected to give a faster and more accurate response than present designs allow. In support of the proposal there is a mathematical model for reactive powered distribution and a sensitivity matrix for voltage regulation assessment, MATLAB simulation results are provided to validate the proposed schemes. The performance with non-linear time varying loads is analysed and refers to a general review of flicker, of methods for measuring flickers due to arc furnace and means for mitigation.
Resumo:
It has been argued that a single two-dimensional visualization plot may not be sufficient to capture all of the interesting aspects of complex data sets, and therefore a hierarchical visualization system is desirable. In this paper we extend an existing locally linear hierarchical visualization system PhiVis (Bishop98a) in several directions: 1. We allow for em non-linear projection manifolds. The basic building block is the Generative Topographic Mapping. 2. We introduce a general formulation of hierarchical probabilistic models consisting of local probabilistic models organized in a hierarchical tree. General training equations are derived, regardless of the position of the model in the tree. 3. Using tools from differential geometry we derive expressions for local directionalcurvatures of the projection manifold. Like PhiVis, our system is statistically principled and is built interactively in a top-down fashion using the EM algorithm. It enables the user to interactively highlight those data in the parent visualization plot which are captured by a child model.We also incorporate into our system a hierarchical, locally selective representation of magnification factors and directional curvatures of the projection manifolds. Such information is important for further refinement of the hierarchical visualization plot, as well as for controlling the amount of regularization imposed on the local models. We demonstrate the principle of the approach on a toy data set andapply our system to two more complex 12- and 19-dimensional data sets.
Resumo:
The dynamics of switching and transmission of an optical signal comprising individual OTDM channels of unequal amplitudes in a dispersion-managed link with in-line non-linear fibre loop mirrors is investigated for the first time.
Resumo:
From a manufacturing perspective, the efficiency of manufacturing operations (such as process planning and production scheduling) are the key element for enhancing manufacturing competence. Process planning and production scheduling functions have been traditionally treated as two separate activities, and have resulted in a range of inefficiencies. These include infeasible process plans, non-available/overloaded resources, high production costs, long production lead times, and so on. Above all, it is unlikely that the dynamic changes can be efficiently dealt with. Despite much research has been conducted to integrate process planning and production scheduling to generate optimised solutions to improve manufacturing efficiency, there is still a gap to achieve the competence required for the current global competitive market. In this research, the concept of multi-agent system (MAS) is adopted as a means to address the aforementioned gap. A MAS consists of a collection of intelligent autonomous agents able to solve complex problems. These agents possess their individual objectives and interact with each other to fulfil the global goal. This paper describes a novel use of an autonomous agent system to facilitate the integration of process planning and production scheduling functions to cope with unpredictable demands, in terms of uncertainties in product mix and demand pattern. The novelty lies with the currency-based iterative agent bidding mechanism to allow process planning and production scheduling options to be evaluated simultaneously, so as to search for an optimised, cost-effective solution. This agent based system aims to achieve manufacturing competence by means of enhancing the flexibility and agility of manufacturing enterprises.
Resumo:
Linear typing schemes can be used to guarantee non-interference and so the soundness of in-place update with respect to a functional semantics. But linear schemes are restrictive in practice, and more restrictive than necessary to guarantee soundness of in-place update. This limitation has prompted research into static analysis and more sophisticated typing disciplines to determine when in-place update may be safely used, or to combine linear and non-linear schemes. Here we contribute to this direction by defining a new typing scheme that better approximates the semantic property of soundness of in-place update for a functional semantics. We begin from the observation that some data are used only in a read-only context, after which it may be safely re-used before being destroyed. Formalising the in-place update interpretation in a machine model semantics allows us to refine this observation, motivating three usage aspects apparent from the semantics that are used to annotate function argument types. The aspects are (1) used destructively, (2), used read-only but shared with result, and (3) used read-only and not shared with the result. The main novelty is aspect (2), which allows a linear value to be safely read and even aliased with a result of a function without being consumed. This novelty makes our type system more expressive than previous systems for functional languages in the literature. The system remains simple and intuitive, but it enjoys a strong soundness property whose proof is non-trivial. Moreover, our analysis features principal types and feasible type reconstruction, as shown in M. Konen'y (In TYPES 2002 workshop, Nijmegen, Proceedings, Springer-Verlag, 2003).
Resumo:
The tribology of linear tape storage system including Linear Tape Open (LTO) and Travan5 was investigated by combining X-ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES), Optical Microscopy and Atomic Force Microscopy (AFM) technologies. The purpose of this study was to understand the tribology mechanism of linear tape systems then projected recording densities may be achieved in future systems. Water vapour pressure or Normalized Water Content (NWC) rather than the Relative Humidity (RH) values (as are used almost universally in this field) determined the extent of PTR and stain (if produced) in linear heads. Approximately linear dependencies were found for saturated PTR increasing with normalized water content increasing over the range studied using the same tape. Fe Stain (if produced) preferentially formed on the head surfaces at the lower water contents. The stain formation mechanism had been identified. Adhesive bond formation is a chemical process that is governed by temperature. Thus the higher the contact pressure, the higher the contact temperature in the interface of head and tape, was produced higher the probability of adhesive bond formation and the greater the amount of transferred material (stain). Water molecules at the interface saturate the surface bonds and makes adhesive junctions less likely. Tape polymeric binder formulation also has a significant role in stain formation, with the latest generation binders producing less transfer of material. This is almost certainly due to higher cohesive bonds within the body of the magnetic layer. TiC in the two-phase ceramic tape-bearing surface (AlTiC) was found to oxidise to form TiO2.The oxidation rate of TiC increased with water content increasing. The oxide was less dense than the underlying carbide; hence the interface between TiO2 oxide and TiC was stressed. Removals of the oxide phase results in the formation of three-body abrasive particles that were swept across the tape head, and gave rise to three-body abrasive wear, particularly in the pole regions. Hence, PTR and subsequent which signal loss and error growth. The lower contact pressure of the LTO system comparing with the Travan5 system ensures that fewer and smaller three-body abrasive particles were swept across the poles and insulator regions. Hence, lower contact pressure, as well as reducing stain in the same time significantly reduces PTR in the LTO system.
Resumo:
This thesis is devoted to the tribology at the head~to~tape interface of linear tape recording systems, OnStream ADRTM system being used as an experimental platform, Combining experimental characterisation with computer modelling, a comprehensive picture of the mechanisms involved in a tape recording system is drawn. The work is designed to isolate the mechanisms responsible for the physical spacing between head and tape with the aim of minimising spacing losses and errors and optimising signal output. Standard heads-used in ADR current products-and prototype heads- DLC and SPL coated and dummy heads built from a AI203-TiC and alternative single-phase ceramics intended to constitute the head tape-bearing surface-are tested in controlled environment for up to 500 hours (exceptionally 1000 hours), Evidences of wear on the standard head are mainly observable as a preferential wear of the TiC phase of the AI203-TiC ceramic, The TiC grains are believed to delaminate due to a fatigue wear mechanism, a hypothesis further confirmed via modelling, locating the maximum von Mises equivalent stress at a depth equivalent to the TiC recession (20 to 30 nm). Debris of TiC delaminated residues is moreover found trapped within the pole-tip recession, assumed therefore to provide three~body abrasive particles, thus increasing the pole-tip recession. Iron rich stain is found over the cycled standard head surface (preferentially over the pole-tip and to a lesser extent over the TiC grains) at any environment condition except high temperature/humidity, where mainly organic stain was apparent, Temperature (locally or globally) affects staining rate and aspect; stain transfer is generally promoted at high temperature. Humidity affects transfer rate and quantity; low humidity produces, thinner stains at higher rate. Stain generally targets preferentially head materials with high electrical conductivity, i.e. Permalloy and TiC. Stains are found to decrease the friction at the head-to-tape interface, delay the TiC recession hollow-out and act as a protective soft coating reducing the pole-tip recession. This is obviously at the expense of an additional spacing at the head-to-tape interface of the order of 20 nm. Two kinds of wear resistant coating are tested: diamond like carbon (DLC) and superprotective layer (SPL), 10 nm and 20 to 40 nm thick, respectively. DLC coating disappears within 100 hours due possibly to abrasive and fatigue wear. SPL coatings are generally more resistant, particularly at high temperature and low humidity, possibly in relation with stain transfer. 20 nm coatings are found to rely on the substrate wear behaviour whereas 40 nm coatings are found to rely on the adhesive strength at the coating/substrate interface. These observations seem to locate the wear-driving forces 40 nm below the surface, hence indicate that for coatings in the 10 nm thickness range-· i,e. compatible with high-density recording-the substrate resistance must be taken into account. Single-phase ceramic as candidate for wear-resistant tape-bearing surface are tested in form of full-contour dummy-heads. The absence of a second phase eliminates the preferential wear observed at the AI203-TiC surface; very low wear rates and no evidence of brittle fracture are observed.
Resumo:
Residual current-operated circuit-breakers (RCCBs) have proved useful devices for the protection of both human beings against ventricular fibrillation and installations against fire. Although they work well with sinusoidal waveforms, there is little published information on their characteristics. Due to shunt connected non-linear devices, not the least of which is the use of power electronic equipment, the supply is distorted. Consequently, RCCBs as well as other protection relays are subject to non-sinusoidal current waveforms. Recent studies showed that RCCBs are greatly affected by harmonics, however the reasons for this are not clear. A literature search has also shown that there are inconsistencies in the analysis of the effect of harmonics on protection relays. In this work, the way RCCBs operate is examined, then a model is built with the aim of assessing the effect of non-sinusoidal current on RCCBs. Tests are then carried out on a number of RCCBs and these, when compared with the results from the model showed good correlation. In addition, the model also enables us to explain the RCCBs characteristics for pure sinusoidal current. In the model developed, various parameters are evaluated but special attention is paid to the instantaneous value of the current and the tripping mechanism movement. A similar assessment method is then used to assess the effect of harmonics on two types of protection relay, the electromechanical instantaneous relay and time overcurrent relay. A model is built for each of them which is then simulated on the computer. Tests results compare well with the simulation results, and thus the model developed can be used to explain the relays behaviour in a harmonics environment. The author's models, analysis and tests show that RCCBs and protection relays are affected by harmonics in a way determined by the waveform and the relay constants. The method developed provides a useful tool and the basic methodology to analyse the behaviour of RCCBs and protection relays in a harmonics environment. These results have many implications, especially the way RCCBs and relays should be tested if harmonics are taken into account.
Resumo:
It is shown that regimes with dynamical chaos are inherent not only to nonlinear system but they can be generated by initially linear systems and the requirements for chaotic dynamics and characteristics need further elaboration. Three simplest physical models are considered as examples. In the first, dynamic chaos in the interaction of three linear oscillators is investigated. Analogous process is shown in the second model of electromagnetic wave scattering in a double periodical inhomogeneous medium occupying half-space. The third model is a linear parametric problem for the electromagnetic field in homogeneous dielectric medium which permittivity is modulated in time. © 2008 Springer Science+Business Media, LLC.
Resumo:
Health and safety policies may be regarded as the cornerstone for positive prevention of occupational accidents and diseases. The Health and Safety at Work, etc Act 1974 makes it a legal duty for employers to prepare and revise a written statement of a general policy with respect to the health and safety at work of employees as well as the organisation and arrangements for carrying out that policy. Despite their importance and the legal equipment to prepare them, health and safety policies have been found, in a large number of plastics processing companies (particularly small companies), to be poorly prepared, inadequately implemented and monitored. An important cause of these inadequacies is the lack of necessary health and safety knowledge and expertise to prepare, implement and monitor policies. One possible way of remedying this problem is to investigate the feasibility of using computers to develop expert system programs to simulate the health and safety (HS) experts' task of preparing the policies and assisting companies implement and monitor them. Such programs use artificial intelligence (AI) techniques to solve this sort of problems which are heuristic in nature and require symbolic reasoning. Expert systems have been used successfully in a variety of fields such as medicine and engineering. An important phase in the feasibility of development of such systems is the engineering of knowledge which consists of identifying the knowledge required, eliciting, structuring and representing it in an appropriate computer programming language.
Resumo:
A Jeffcott rotor consists of a disc at the centre of an axle supported at its end by bearings. A bolted Jeffcott rotor is formed by two discs, each with a shaft on one side. The discs are held together by spring loaded bolts near the outer edge. When the rotor turns there is tendency for the discs to separate on one side. This effect is more marked if the rotor is unbalanced, especially at resonance speeds. The equations of motion of the system have been developed with four degrees of freedom to include the rotor and bearing movements in the respective axes. These equations which include non-linear terms caused by the rotor opening, are subjected to external force such from rotor imbalance. A simulation model based on these equations was created using SIMULINK. An experimental test rig was used to characterise the dynamic features. Rotor discs open at a lateral displacement of the rotor of 0.8 mm. This is the threshold value used to show the change of stiffness from high stiffness to low stiffness. The experimental results, which measure the vibration amplitude of the rotor, show the dynamic behaviour of the bolted rotor due to imbalance. Close agreement of the experimental and theoretical results from time histories, waterfall plots, pseudo-phase plots and rotor orbit plot, indicated the validity of the model and existence of the non-linear jump phenomenon.
Resumo:
The main theme of research of this project concerns the study of neutral networks to control uncertain and non-linear control systems. This involves the control of continuous time, discrete time, hybrid and stochastic systems with input, state or output constraints by ensuring good performances. A great part of this project is devoted to the opening of frontiers between several mathematical and engineering approaches in order to tackle complex but very common non-linear control problems. The objectives are: 1. Design and develop procedures for neutral network enhanced self-tuning adaptive non-linear control systems; 2. To design, as a general procedure, neural network generalised minimum variance self-tuning controller for non-linear dynamic plants (Integration of neural network mapping with generalised minimum variance self-tuning controller strategies); 3. To develop a software package to evaluate control system performances using Matlab, Simulink and Neural Network toolbox. An adaptive control algorithm utilising a recurrent network as a model of a partial unknown non-linear plant with unmeasurable state is proposed. Appropriately, it appears that structured recurrent neural networks can provide conveniently parameterised dynamic models for many non-linear systems for use in adaptive control. Properties of static neural networks, which enabled successful design of stable adaptive control in the state feedback case, are also identified. A survey of the existing results is presented which puts them in a systematic framework showing their relation to classical self-tuning adaptive control application of neural control to a SISO/MIMO control. Simulation results demonstrate that the self-tuning design methods may be practically applicable to a reasonably large class of unknown linear and non-linear dynamic control systems.
Resumo:
A potential low cost novel sensing scheme for monitoring absolute strain is demonstrated. The scheme utilizes a synthetic heterodyne interrogation technique working in conjunction with a linearly chirped, sinusoidally tapered, apodized Bragg grating sensor. The interrogation technique is relatively simple to implement in terms of the required optics and the peripheral electronics. This scheme generates an output signal that has a quasi-linear response to absolute strain with a static strain resolution of ~±20 με and an operating range of ~1000 με.
Resumo:
A novel form of low coherence interferometric sensor is described. The channelled spectrum produced by illuminating a sensing interferometer with a broadband source is analysed directly using a CCD array. The system currently provides unambiguous measurement over a range of 1.5 mm with an accuracy of better than 6 µm.