913 resultados para Lesbian, Gay, Bisexual, and Transgender Studies


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, articaine hydrochloride (ATC) is a local anesthetic widely used in dental procedures, but its side effects include paresthesia and nerve injury. Alginate/chitosan nanoparticles (AG/CSnano) can be used as carrier for drugs, overcoming the problems. The aim of this work was to evaluate the factors (Calcium/alginate [Ca2+:AG] and Chitosan/alginate [CS:AG] mass ratios) influence on the average size, polydispersity index, zeta potential and encapsulation efficiency of ATC. AG/CSnano containing ATC were prepared by ionic pregelation method. A three-level factorial design was carried out and the factors varied were Ca2+/AG mass ratio and CS/AG mass ratio. There were obtained nanoparticles with size range of 340–550 nm and polydispersity index between 0.2 and 0.5, zeta potential range –19 and –22 mV and encapsulation efficiency of ATC in AG/Csnano between 22 and 45%. According to the results, the average size, polydispersity index and encapsulation efficiency were significantly affected to the variation of Ca2+/AG and CS/AG mass ratio, but the zeta potential didn't change significantly with factor variations. The factorial design showed it was possible to identify formulations that presented better results for the parameters measured. The factor chosen for the suitable formulations was the encapsulation efficiency. Through this parameter, one formulation was chosen with highest encapsulation efficiency of ATC and presented good colloidal stability parameters aiming future clinical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A shift of the photoluminescence (PL) emission was observed in ZnS prepared by microwave assisted solvothermal method with the increase of the time in microwave. In this work we reported a study of the optical behavior linking with the structural disorder according to XRD and FEG-TEM results. The reduction of intrinsic defects in the lattice is responsible for the decrease of electronic levels in the band gap changing the PL profile. This effect was confirmed by electronic structure calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Literature mentions propyl gallate (PG) as a non-toxic synthetic antioxidant that can be used as a food additive due to its high tolerance to heat. It is important to understand the thermal properties and to identify the decomposition products of this substance, since it has been reported to be thermally stable at temperatures as high as 300 °C. Simultaneous thermogravimetry-differential thermal analysis (TG-DTA), differential scanning calorimetry-photovisual (DSC-photovisual), coupled thermogravimetry-infrared spectroscopy (TG-FTIR) analyses and spectroscopic techniques were used to study the food additive PG. The TG-DTA curves, which were performed with the aid of DSC-photovisual, provided information concerning the thermal stability and decomposition profiles of the compound. From the TG-FTIR coupled techniques, it was possible to identify n-propanol as a possible volatile compound released during the thermal decomposition of the antioxidant. A complete spectroscopic characterization in the ultraviolet, visible, near and middle infrared regions was performed in order to understand the spectroscopic properties of PG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The compound obtained via state solid reaction of the La2O3 and SrO oxides and expose the room atmosphere shows the crystallographic data of the compound reported as La2SrOx. However, thermogravimetric, differential thermal analysis and XRD with controlled temperature indicated that the stoichiometry of the compound is 2La(OH)(3)-SrCO3, which structural parameters were determined by using the Rietveld method. It was verified that when the compound exposed at room atmosphere, the mixture oxide absorbs H2O and CO2 producing hydroxide and carbonate of lanthanum and strontium, respectively, which thermal decomposition occurs by the same steps, producing the La2O3-SrO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermogravimetry (TG), differential thermal analysis (DTA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and DFT theoretical calculations were used to study benzamide. The TG-DTA and DSC curves provided information concerning the melting point, evaporation and thermal stability of the compound. Using the FTIR technique it was possible to confirm the evaporation of the compound with no degradation. Density functional theory (DFT) at the 6-311++G (3df, 3dp) level, provided information regarding the energies involved in HOMO-LUMO transitions and the chemical stability of the compound.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear magnetic resonance (NMR) is a tool used to probe the physical and chemical environments of specific atoms in molecules. This research explored small molecule analogues to biological materials to determine NMR parameters using ab initio computations, comparing the results with solid-state NMR measurements. Models, such as dimethyl phosphate (DMP) for oligonucleotides or CuCl for the active site of the protein azurin, represented computationally unwieldy macromolecules. 31P chemical shielding tensors were calculated for DMP as a function of torsion angles, as well as for the phosphate salts, ammonium dihydrogen phosphate (ADHP), diammonium hydrogen phosphate, and magnesium dihydrogen phosphate. The computational DMP work indicated a problem with the current standard 31P reference of 85% H3PO4(aq.). Comparison of the calculations and experimental spectra for the phosphate salts indicated ADHP might be a preferable alternative as a solid state NMR reference for 31P. Experimental work included magic angle spinning experiments on powder samples using the UNL chemistry department’s Bruker Avance 600 MHz NMR to collect data to determine chemical shielding anisotropies. For the quadrupolar nuclei of copper and scandium, the electric field gradient was calculated in diatomic univalent metal halides, allowing determination of the minimal level of theory necessary to compute NMR parameters for these nuclei.