984 resultados para LIKELIHOOD
Resumo:
Different signatures of natural selection persist over varying time scales in our genome, revealing possible episodes of adaptative evolution during human history. Here, we identify genes showing signatures of ancestral positive selection in the human lineage and investigate whether some of those genes have been evolving adaptatively in extant human populations. Specifically, we compared more than 11,000 human genes with their orthologs inchimpanzee, mouse, rat and dog and applied a branch-site likelihood method to test for positive selection on the human lineage. Among the significant cases, a robust set of 11 genes were then further explored for signatures of recent positive selection using SNP data. We genotyped 223 SNPs in 39 worldwide populations from the HGDP Diversity panel and supplemented this information with available genotypes for up to 4,814 SNPs distributed along 2 Mb centered on each gene. After exploring the allele frequency spectrum, population differentiation and the maintainance of long unbroken haplotypes, we found signals of recent adaptative phenomena in only one of the 11 candidate gene regions. However, the signal ofrecent selection in this region may come from a different, neighbouring gene (CD5) ratherthan from the candidate gene itself (VPS37C). For this set of positively-selected genes in thehuman lineage, we find no indication that these genes maintained their rapid evolutionarypace among human populations. Based on these data, it therefore appears that adaptation forhuman-specific and for population-specific traits may have involved different genes.
Resumo:
When certain control parameters of nervous cell models are varied, complex bifurcation structures develop in which the dynamical behaviors available appear classified in blocks, according to criteria of dynamical likelihood. This block structured dynamics may be a clue to understand how activated neurons encode information by firing spike trains of their action potentials.
Resumo:
Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation‑based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi‑resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Among the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, have the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical‑based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.
Resumo:
Structures built by animals are a widespread and ecologically important 'extended phenotype'. While its taxonomic diversity has been well described, factors affecting short-term evolution of building behavior within a species have received little experimental attention. Here we describe how, given the opportunity, wandering Drosophila melanogaster larvae often build long tunnels in agar substrates and embed their pupae within them. These embedded larvae are characterized by a longer egg-to-pupariation developmental time than larvae that pupate on the surface. Assuming that such building behaviors are likely to be energetically costly and/or time consuming, we hypothesized that they should evolve to be less pronounced under resource or time limitation. In accord with this prediction, larvae from populations evolved for 160 generations under a regime that combines larval malnutrition with limited developmental time dug shorter tunnels than larvae from control unselected populations. However, the proportion of larvae that embedded before pupation did not differ between the malnutrition-adapted and control populations, suggesting that tunnel length and likelihood of embedding before pupation are controlled by different genetic loci. The behaviors exhibited by wandering larvae of Drosophila melanogaster prior to pupation offer a model system to study evolution of animal building behaviors because the tunneling and embedding phenotypes are simple, facultative and highly variable.
Resumo:
This paper suggests a method for obtaining efficiency bounds in models containing either only infinite-dimensional parameters or both finite- and infinite-dimensional parameters (semiparametric models). The method is based on a theory of random linear functionals applied to the gradient of the log-likelihood functional and is illustrated by computing the lower bound for Cox's regression model
Resumo:
One signature of adaptive radiation is a high level of trait change early during the diversification process and a plateau toward the end of the radiation. Although the study of the tempo of evolution has historically been the domain of paleontologists, recently developed phylogenetic tools allow for the rigorous examination of trait evolution in a tremendous diversity of organisms. Enemy-driven adaptive radiation was a key prediction of Ehrlich and Raven's coevolutionary hypothesis [Ehrlich PR, Raven PH (1964) Evolution 18:586-608], yet has remained largely untested. Here we examine patterns of trait evolution in 51 North American milkweed species (Asclepias), using maximum likelihood methods. We study 7 traits of the milkweeds, ranging from seed size and foliar physiological traits to defense traits (cardenolides, latex, and trichomes) previously shown to impact herbivores, including the monarch butterfly. We compare the fit of simple random-walk models of trait evolution to models that incorporate stabilizing selection (Ornstein-Ulenbeck process), as well as time-varying rates of trait evolution. Early bursts of trait evolution were implicated for 2 traits, while stabilizing selection was implicated for several others. We further modeled the relationship between trait change and species diversification while allowing rates of trait evolution to vary during the radiation. Species-rich lineages underwent a proportionately greater decline in latex and cardenolides relative to species-poor lineages, and the rate of trait change was most rapid early in the radiation. An interpretation of this result is that reduced investment in defensive traits accelerated diversification, and disproportionately so, early in the adaptive radiation of milkweeds.
Resumo:
O objetivo deste trabalho foi avaliar influência da informação de parentesco na seleção de progênies de soja quanto à produtividade e aos teores de óleo e proteína, com base no uso de modelos mistos de predição dos valores genéticos. Novecentas progênies F4:6 e 200 progênies F4:7 de soja foram avaliadas nas safras 2010/2011 e 2011/2012, respectivamente. As progênies foram obtidas de cruzamentos múltiplos a partir de 57 progenitores. Os dados foram analisados por meio de modelos aleatórios (quadrados mínimos) e mistos BLUP/REML ("best linear unbiased prediction/restricted maximum likelihood"). Os maiores valores de ganhos preditos foram obtidos com o BLUP/REML. Os valores genéticos preditos com o método BLUP/REML, sem informação de parentesco, apresentaram alta correlação com aqueles obtidos com o modelo aleatório, além de detectada alta coincidência das progênies selecionadas. A inclusão da matriz de parentesco resultou na seleção de progênies diferentes e em maior acurácia na predição dos valores genéticos.
Resumo:
This paper deals with the goodness of the Gaussian assumption when designing second-order blind estimationmethods in the context of digital communications. The low- andhigh-signal-to-noise ratio (SNR) asymptotic performance of the maximum likelihood estimator—derived assuming Gaussiantransmitted symbols—is compared with the performance of the optimal second-order estimator, which exploits the actualdistribution of the discrete constellation. The asymptotic study concludes that the Gaussian assumption leads to the optimalsecond-order solution if the SNR is very low or if the symbols belong to a multilevel constellation such as quadrature-amplitudemodulation (QAM) or amplitude-phase-shift keying (APSK). On the other hand, the Gaussian assumption can yield importantlosses at high SNR if the transmitted symbols are drawn from a constant modulus constellation such as phase-shift keying (PSK)or continuous-phase modulations (CPM). These conclusions are illustrated for the problem of direction-of-arrival (DOA) estimation of multiple digitally-modulated signals.
Resumo:
Status epilepticus (SE) prognosis is related to nonmodifiable factors (age, etiology), but the exact role of drug treatment is unclear. This study was undertaken to address the prognostic role of treatment adherence to guidelines (TAG). We prospectively studied over 26 months a cohort of adults with incident SE (excluding postanoxic). TAG was assessed in terms of drug doses (± 30 % of recommendations) and medication sequence; its prognostic impact on mortality and return to baseline conditions was adjusted for etiology, SE severity [Status Epilepticus Severity Score (STESS)], and comorbidities. Of 225 patients, 26 (12 %) died and 82 (36 %) were discharged with a new handicap; TAG was observed in 142 (63 %). On univariate analysis, age, etiology, SE severity, and comorbidities were significantly related to outcome, while TAG was associated with neither outcome nor likelihood of SE control. Logistic regression for mortality identified etiology [odds ratio (OR) 18.8, 95 % confidence interval (CI) 4.3-82.8] and SE severity (STESS ≥ 3; OR 1.7, 95 % CI 1.2-2.4) as independent predictors, and for lack of return to baseline, again etiology (OR 7.4, 95 % CI 3.9-14.0) and STESS ≥ 3 (OR 1.7, 95 % CI 1.4-2.2). Similar results were found for the subgroup of 116 patients with generalized-convulsive SE. Receiver operator characteristic (ROC) analyses confirmed that TAG did not improve outcome prediction. This study of a large SE cohort suggests that treatment adherence to recommendations using current medications seems to play a negligible prognostic role (class III), confirming the importance of the biological background. Awaiting further treatment trials, it appears mandatory to apply resources towards identification of new therapeutic approaches.
A performance lower bound for quadratic timing recovery accounting for the symbol transition density
Resumo:
The symbol transition density in a digitally modulated signal affects the performance of practical synchronization schemes designed for timing recovery. This paper focuses on the derivation of simple performance limits for the estimation of the time delay of a noisy linearly modulated signal in the presence of various degrees of symbol correlation produced by the varioustransition densities in the symbol streams. The paper develops high- and low-signal-to-noise ratio (SNR) approximations of the so-called (Gaussian) unconditional Cramér–Rao bound (UCRB),as well as general expressions that are applicable in all ranges of SNR. The derived bounds are valid only for the class of quadratic, non-data-aided (NDA) timing recovery schemes. To illustrate the validity of the derived bounds, they are compared with the actual performance achieved by some well-known quadratic NDA timing recovery schemes. The impact of the symbol transitiondensity on the classical threshold effect present in NDA timing recovery schemes is also analyzed. Previous work on performancebounds for timing recovery from various authors is generalized and unified in this contribution.
Resumo:
This paper analyzes the asymptotic performance of maximum likelihood (ML) channel estimation algorithms in wideband code division multiple access (WCDMA) scenarios. We concentrate on systems with periodic spreading sequences (period larger than or equal to the symbol span) where the transmitted signal contains a code division multiplexed pilot for channel estimation purposes. First, the asymptotic covariances of the training-only, semi-blind conditional maximum likelihood (CML) and semi-blind Gaussian maximum likelihood (GML) channelestimators are derived. Then, these formulas are further simplified assuming randomized spreading and training sequences under the approximation of high spreading factors and high number of codes. The results provide a useful tool to describe the performance of the channel estimators as a function of basicsystem parameters such as number of codes, spreading factors, or traffic to training power ratio.
Resumo:
In this paper, the theory of hidden Markov models (HMM) isapplied to the problem of blind (without training sequences) channel estimationand data detection. Within a HMM framework, the Baum–Welch(BW) identification algorithm is frequently used to find out maximum-likelihood (ML) estimates of the corresponding model. However, such a procedureassumes the model (i.e., the channel response) to be static throughoutthe observation sequence. By means of introducing a parametric model fortime-varying channel responses, a version of the algorithm, which is moreappropriate for mobile channels [time-dependent Baum-Welch (TDBW)] isderived. Aiming to compare algorithm behavior, a set of computer simulationsfor a GSM scenario is provided. Results indicate that, in comparisonto other Baum–Welch (BW) versions of the algorithm, the TDBW approachattains a remarkable enhancement in performance. For that purpose, onlya moderate increase in computational complexity is needed.
Resumo:
The well-known structure of an array combiner along with a maximum likelihood sequence estimator (MLSE) receiveris the basis for the derivation of a space-time processor presentinggood properties in terms of co-channel and intersymbol interferencerejection. The use of spatial diversity at the receiver front-endtogether with a scalar MLSE implies a joint design of the spatialcombiner and the impulse response for the sequence detector. Thisis faced using the MMSE criterion under the constraint that thedesired user signal power is not cancelled, yielding an impulse responsefor the sequence detector that is matched to the channel andcombiner response. The procedure maximizes the signal-to-noiseratio at the input of the detector and exhibits excellent performancein realistic multipath channels.
Resumo:
In this paper, the problem of frame-level symboltiming acquisition for UWB signals is addressed. The main goalis the derivation of a frame-level timing estimator which does notrequire any prior knowledge of neither the transmitted symbolsnor the received template waveform. The independence withrespect to the received waveform is of special interest in UWBcommunication systems, where a fast and accurate estimation ofthe end-to-end channel response is a challenging and computationallydemanding task. The proposed estimator is derived under theunconditional maximum likelihood criterion, and because of thelow power of UWB signals, the low-SNR assumption is adopted. Asa result, an optimal frame-level timing estimator is derived whichoutperforms existing acquisition methods in low-SNR scenarios.
Resumo:
This work provides a general framework for the design of second-order blind estimators without adopting anyapproximation about the observation statistics or the a prioridistribution of the parameters. The proposed solution is obtainedminimizing the estimator variance subject to some constraints onthe estimator bias. The resulting optimal estimator is found todepend on the observation fourth-order moments that can be calculatedanalytically from the known signal model. Unfortunately,in most cases, the performance of this estimator is severely limitedby the residual bias inherent to nonlinear estimation problems.To overcome this limitation, the second-order minimum varianceunbiased estimator is deduced from the general solution by assumingaccurate prior information on the vector of parameters.This small-error approximation is adopted to design iterativeestimators or trackers. It is shown that the associated varianceconstitutes the lower bound for the variance of any unbiasedestimator based on the sample covariance matrix.The paper formulation is then applied to track the angle-of-arrival(AoA) of multiple digitally-modulated sources by means ofa uniform linear array. The optimal second-order tracker is comparedwith the classical maximum likelihood (ML) blind methodsthat are shown to be quadratic in the observed data as well. Simulationshave confirmed that the discrete nature of the transmittedsymbols can be exploited to improve considerably the discriminationof near sources in medium-to-high SNR scenarios.