958 resultados para Intervals modals
Resumo:
Background Increasing prevalence of overweight and obesity represents a global pandemic. As the largest occupational group in international healthcare systems nurses are at the forefront of health promotion to address this pandemic. However, nurses own health behaviours are known to influence the extent to which they engage in health promotion and the public's confidence in advice offered. Estimating the prevalence of overweight and obesity among nurses is therefore important. However, to date, prevalence estimates have been based on non-representative samples and internationally no studies have compared prevalence of overweight and obesity among nurses to other healthcare professionals using representative data. Objectives To estimate overweight and obesity prevalence among nurses in Scotland, and compare to other healthcare professionals and those working in non-heath related occupations. Design Cross-sectional study using a nationally representative sample of five aggregated annual rounds (2008-2012) of the Scottish Health Survey. Setting Scotland. Participants: 13,483 adults aged 17 to 65 indicating they had worked in the past 4 weeks, classified in four occupational groups: nurses (n = 411), other healthcare professionals (n = 320), unqualified care staff (n = 685), and individuals employed in non-health related occupations (n = 12,067). Main outcome measures: Prevalence of overweight and obesity defined as Body Mass Index ≥ 25.0. Methods Estimates of overweight and obesity prevalence in each occupational group were calculated with 95% confidence intervals (CI). A logistic regression model was then built to compare the odds of being overweight or obese with not being overweight or obese for nurses in comparison to the other occupational categories. Data were analysed using SAS 9.1.3. Results 69.1% (95% CI 64.6,73.6) of Scottish nurses were overweight or obese. Prevalence of overweight and obesity was higher in nurses than other healthcare professionals (51.3%, CI 45.8,56.7), unqualified care staff (68.5%, CI 65.0,72.0) and those in non-health related occupations (68.9%, CI 68.1,69.7). A logistic regression model adjusted for socio-demographic composition indicated that, compared to nurses, the odds of being overweight or obese was statistically significantly lower for other healthcare professionals (Odds Ratio [OR] 0.45, CI 0.33,0.61) and those in non-health related occupations (OR 0.78, CI 0.62,0.97). Conclusions Prevalence of overweight and obesity among Scottish nurses is worryingly high, and significantly higher than those in other healthcare professionals and non-health related occupations. High prevalence of overweight and obesity potentially harms nurses’ own health and hampers the effectiveness of nurses’ health promotion role. Interventions are therefore urgently required to address overweight and obesity among the Scottish nursing workforce.
Resumo:
Objective: To develop sedation, pain, and agitation quality measures using process control methodology and evaluate their properties in clinical practice. Design: A Sedation Quality Assessment Tool was developed and validated to capture data for 12-hour periods of nursing care. Domains included pain/discomfort and sedation-agitation behaviors; sedative, analgesic, and neuromuscular blocking drug administration; ventilation status; and conditions potentially justifying deep sedation. Predefined sedation-related adverse events were recorded daily. Using an iterative process, algorithms were developed to describe the proportion of care periods with poor limb relaxation, poor ventilator synchronization, unnecessary deep sedation, agitation, and an overall optimum sedation metric. Proportion charts described processes over time (2 monthly intervals) for each ICU. The numbers of patients treated between sedation-related adverse events were described with G charts. Automated algorithms generated charts for 12 months of sequential data. Mean values for each process were calculated, and variation within and between ICUs explored qualitatively. Setting: Eight Scottish ICUs over a 12-month period. Patients: Mechanically ventilated patients. Interventions: None. Measurements and Main Results: The Sedation Quality Assessment Tool agitation-sedation domains correlated with the Richmond Sedation Agitation Scale score (Spearman [rho] = 0.75) and were reliable in clinician-clinician (weighted kappa; [kappa] = 0.66) and clinician-researcher ([kappa] = 0.82) comparisons. The limb movement domain had fair correlation with Behavioral Pain Scale ([rho] = 0.24) and was reliable in clinician-clinician ([kappa] = 0.58) and clinician-researcher ([kappa] = 0.45) comparisons. Ventilator synchronization correlated with Behavioral Pain Scale ([rho] = 0.54), and reliability in clinician-clinician ([kappa] = 0.29) and clinician-researcher ([kappa] = 0.42) comparisons was fair-moderate. Eight hundred twenty-five patients were enrolled (range, 59-235 across ICUs), providing 12,385 care periods for evaluation (range 655-3,481 across ICUs). The mean proportion of care periods with each quality metric varied between ICUs: excessive sedation 12-38%; agitation 4-17%; poor relaxation 13-21%; poor ventilator synchronization 8-17%; and overall optimum sedation 45-70%. Mean adverse event intervals ranged from 1.5 to 10.3 patients treated. The quality measures appeared relatively stable during the observation period. Conclusions: Process control methodology can be used to simultaneously monitor multiple aspects of pain-sedation-agitation management within ICUs. Variation within and between ICUs could be used as triggers to explore practice variation, improve quality, and monitor this over time
Resumo:
Kingston-Smith, A. H., Bollard, A. L., Humphreys, M. O,, Theodorou, M. K. (2002). An assessment of the ability of the stay-green phenotype in Lolium species to provide an improved protein supply for ruminants. Annals of Botany, 89(6), 731-740. Sponsorship: BBSRC/MAFF/Milk Development Council/Meat and Livestock Commission/Industry. RAE2008
Resumo:
After the 1980s it is diffi cult, following stylistic criteria, to draw a map of contemporary academic music. All styles are compossible, and all are practiced. In this context, the geographical entity “South of Italy” does not stand out for a musical identity with special technical-stylistic features. Rather, at a socio-cultural level, the South remains today – in music no less than in all areas where there is a gap between top development and stagnation – a land of emigrants: six out of the seven composers treated (Ivan Fedele, Giuseppe Colardo, Rosario Mirigliano, Giuseppe Soccio, Nicola Cisternino, Biagio Putignano, Paolo Aralla) live in the North of Italy. The positive aspect of this is the affi nity of the South with the transnational and superstructural community of contemporary music, which from European and Western has now become almost global. The composers under consideration belong to the generation of the ‘50s, rooted in the serial and post-serial movements (from which Franco Donatoni, Luciano Berio, Luigi Nono, Salvatore Sciarrino, Giacinto Scelsi, are the principals models, to mention only the Italians), dipped in the general phenomenon of timbrism (particularly spectralism), and acquainted with electronics. They draw from these sources various instruments of compositional technique and aspects of their poetics. In particular these composers, active from the ‘80s, develop new ways of construction of the temporal form of music. They share the goal to establish a new continuity, different from the tonal one but at the same time transcending the serial and post-serial disintegration and fragmentation. The primary means to this end is a new enhancement of the category of fi gure, as a clear and distinct, recognizable aggregate of pitches, intervals, register, durations, timbre, articulation, dynamics, and texture. Each composer elaborates the atonal fi gural material in different ways, emphasizing one aspect or another. For example, Fedele (1953) is a master in the management of form per se, Colardo (1953) in the activation of disturbed harmonic effects, Mirigliano (1950) in the creation of a slight tension from the smallest vibrations of sound, Soccio (1950) in the set up of movement by means of accumulations and discharges of energy, Cisternino (1957) in a Cagean-Scelsian emphasis on sound as such, Putignano (1960) in the suspension of time through the succession and transformation of images, Aralla (1960) in the foundation of form from below, from the concreteness of sound.
Resumo:
Tese de Doutoramento apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Doutror em Ciências da Terra.
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
This paper presents a new approach to window-constrained scheduling, suitable for multimedia and weakly-hard real-time systems. We originally developed an algorithm, called Dynamic Window-Constrained Scheduling (DWCS), that attempts to guarantee no more than x out of y deadlines are missed for real-time jobs such as periodic CPU tasks, or delay-constrained packet streams. While DWCS is capable of generating a feasible window-constrained schedule that utilizes 100% of resources, it requires all jobs to have the same request periods (or intervals between successive service requests). We describe a new algorithm called Virtual Deadline Scheduling (VDS), that provides window-constrained service guarantees to jobs with potentially different request periods, while still maximizing resource utilization. VDS attempts to service m out of k job instances by their virtual deadlines, that may be some finite time after the corresponding real-time deadlines. Notwithstanding, VDS is capable of outperforming DWCS and similar algorithms, when servicing jobs with potentially different request periods. Additionally, VDS is able to limit the extent to which a fraction of all job instances are serviced late. Results from simulations show that VDS can provide better window-constrained service guarantees than other related algorithms, while still having as good or better delay bounds for all scheduled jobs. Finally, an implementation of VDS in the Linux kernel compares favorably against DWCS for a range of scheduling loads.
Resumo:
The problem of discovering frequent poly-regions (i.e. regions of high occurrence of a set of items or patterns of a given alphabet) in a sequence is studied, and three efficient approaches are proposed to solve it. The first one is entropy-based and applies a recursive segmentation technique that produces a set of candidate segments which may potentially lead to a poly-region. The key idea of the second approach is the use of a set of sliding windows over the sequence. Each sliding window covers a sequence segment and keeps a set of statistics that mainly include the number of occurrences of each item or pattern in that segment. Combining these statistics efficiently yields the complete set of poly-regions in the given sequence. The third approach applies a technique based on the majority vote, achieving linear running time with a minimal number of false negatives. After identifying the poly-regions, the sequence is converted to a sequence of labeled intervals (each one corresponding to a poly-region). An efficient algorithm for mining frequent arrangements of intervals is applied to the converted sequence to discover frequently occurring arrangements of poly-regions in different parts of DNA, including coding regions. The proposed algorithms are tested on various DNA sequences producing results of significant biological meaning.
Resumo:
The problem of discovering frequent arrangements of regions of high occurrence of one or more items of a given alphabet in a sequence is studied, and two efficient approaches are proposed to solve it. The first approach is entropy-based and uses an existing recursive segmentation technique to split the input sequence into a set of homogeneous segments. The key idea of the second approach is to use a set of sliding windows over the sequence. Each sliding window keeps a set of statistics of a sequence segment that mainly includes the number of occurrences of each item in that segment. Combining these statistics efficiently yields the complete set of regions of high occurrence of the items of the given alphabet. After identifying these regions, the sequence is converted to a sequence of labeled intervals (each one corresponding to a region). An efficient algorithm for mining frequent arrangements of temporal intervals on a single sequence is applied on the converted sequence to discover frequently occurring arrangements of these regions. The proposed algorithms are tested on various DNA sequences producing results with significant biological meaning.
Resumo:
The system presented here is based on neurophysiological and electrophysiological data. It computes three types of increasingly integrated temporal and probability contexts, in a bottom-up mode. To each of these contexts corresponds an increasingly specific top-down priming effect on lower processing stages, mostly pattern recognition and discrimination. Contextual learning of time intervals, events' temporal order or sequential dependencies and events' prior probability results from the delivery of large stimuli sequences. This learning gives rise to emergent properties which closely match the experimental data.
Resumo:
Our eyes are constantly in motion. Even during visual fixation, small eye movements continually jitter the location of gaze. It is known that visual percepts tend to fade when retinal image motion is eliminated in the laboratory. However, it has long been debated whether, during natural viewing, fixational eye movements have functions in addition to preventing the visual scene from fading. In this study, we analysed the influence in humans of fixational eye movements on the discrimination of gratings masked by noise that has a power spectrum similar to that of natural images. Using a new method of retinal image stabilization18, we selectively eliminated the motion of the retinal image that normally occurs during the intersaccadic intervals of visual fixation. Here we show that fixational eye movements improve discrimination of high spatial frequency stimuli, but not of low spatial frequency stimuli. This improvement originates from the temporal modulations introduced by fixational eye movements in the visual input to the retina, which emphasize the high spatial frequency harmonics of the stimulus. In a natural visual world dominated by low spatial frequencies, fixational eye movements appear to constitute an effective sampling strategy by which the visual system enhances the processing of spatial detail.
Resumo:
This article describes further evidence for a new neural network theory of biological motion perception that is called a Motion Boundary Contour System. This theory clarifies why parallel streams Vl-> V2 and Vl-> MT exist for static form and motion form processing among the areas Vl, V2, and MT of visual cortex. The Motion Boundary Contour System consists of several parallel copies, such that each copy is activated by a different range of receptive field sizes. Each copy is further subdivided into two hierarchically organized subsystems: a Motion Oriented Contrast Filter, or MOC Filter, for preprocessing moving images; and a Cooperative-Competitive Feedback Loop, or CC Loop, for generating emergent boundary segmentations of the filtered signals. The present article uses the MOC Filter to explain a variety of classical and recent data about short-range and long-range apparent motion percepts that have not yet been explained by alternative models. These data include split motion; reverse-contrast gamma motion; delta motion; visual inertia; group motion in response to a reverse-contrast Ternus display at short interstimulus intervals; speed-up of motion velocity as interfiash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size; various classical dependencies between flash duration, spatial separation, interstimulus interval, and motion threshold known as Korte's Laws; and dependence of motion strength on stimulus orientation and spatial frequency. These results supplement earlier explanations by the model of apparent motion data that other models have not explained; a recent proposed solution of the global aperture problem, including explanations of motion capture and induced motion; an explanation of how parallel cortical systems for static form perception and motion form perception may develop, including a demonstration that these parallel systems are variations on a common cortical design; an explanation of why the geometries of static form and motion form differ, in particular why opposite orientations differ by 90°, whereas opposite directions differ by 180°, and why a cortical stream Vl -> V2 -> MT is needed; and a summary of how the main properties of other motion perception models can be assimilated into different parts of the Motion Boundary Contour System design.
Resumo:
Working memory neural networks are characterized which encode the invariant temporal order of sequential events that may be presented at widely differing speeds, durations, and interstimulus intervals. This temporal order code is designed to enable all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed in neural architectures which self-organize learned codes for variable-rate speech perception, sensory-motor planning, or 3-D visual object recognition. Using such a working memory, a self-organizing architecture for invariant 3-D visual object recognition is described that is based on the model of Seibert and Waxman [1].
Resumo:
Working memory neural networks are characterized which encode the invariant temporal order of sequential events. Inputs to the networks, called Sustained Temporal Order REcurrent (STORE) models, may be presented at widely differing speeds, durations, and interstimulus intervals. The STORE temporal order code is designed to enable all emergent groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed in neural architectures which self-organize learned codes for variable-rate speech perception, sensory-motor planning, or 3-D visual object recognition. Using such a working memory, a self-organizing architecture for invariant 3-D visual object recognition is described. The new model is based on the model of Seibert and Waxman (1990a), which builds a 3-D representation of an object from a temporally ordered sequence of its 2-D aspect graphs. The new model, called an ARTSTORE model, consists of the following cascade of processing modules: Invariant Preprocessor --> ART 2 --> STORE Model --> ART 2 --> Outstar Network.
Resumo:
A neural model is described of how adaptively timed reinforcement learning occurs. The adaptive timing circuit is suggested to exist in the hippocampus, and to involve convergence of dentate granule cells on CA3 pyramidal cells, and NMDA receptors. This circuit forms part of a model neural system for the coordinated control of recognition learning, reinforcement learning, and motor learning, whose properties clarify how an animal can learn to acquire a delayed reward. Behavioral and neural data are summarized in support of each processing stage of the system. The relevant anatomical sites are in thalamus, neocortex, hippocampus, hypothalamus, amygdala, and cerebellum. Cerebellar influences on motor learning are distinguished from hippocampal influences on adaptive timing of reinforcement learning. The model simulates how damage to the hippocampal formation disrupts adaptive timing, eliminates attentional blocking, and causes symptoms of medial temporal amnesia. It suggests how normal acquisition of subcortical emotional conditioning can occur after cortical ablation, even though extinction of emotional conditioning is retarded by cortical ablation. The model simulates how increasing the duration of an unconditioned stimulus increases the amplitude of emotional conditioning, but does not change adaptive timing; and how an increase in the intensity of a conditioned stimulus "speeds up the clock", but an increase in the intensity of an unconditioned stimulus does not. Computer simulations of the model fit parametric conditioning data, including a Weber law property and an inverted U property. Both primary and secondary adaptively timed conditioning are simulated, as are data concerning conditioning using multiple interstimulus intervals (ISIs), gradually or abruptly changing ISis, partial reinforcement, and multiple stimuli that lead to time-averaging of responses. Neurobiologically testable predictions are made to facilitate further tests of the model.