996 resultados para Intermediate-filament Proteins
Resumo:
It has been demonstrated that the alpha2 chain of laminin-2 present on the surface of Schwann cells is involved in the process of attachment of Mycobacterium leprae to these cells. Searching for M. leprae laminin-binding molecules, in a previous study we isolated and characterized the cationic proteins histone-like protein (Hlp) and ribosomal proteins S4 and S5 as potential adhesins involved in M. leprae-Schwann cell interaction. Hlp was shown to bind alpha2-laminins and to greatly enhance the attachment of mycobacteria to ST88-14 Schwann cells. In the present study, we investigated the laminin-binding capacity of the ribosomal proteins S4 and S5. The genes coding for these proteins were PCR amplified and their recombinant products were shown to bind alpha2-laminins in overlay assays. However, when tested in ELISA-based assays and in adhesion assays with ST88-14 cells, in contrast to Hlp, S4 and S5 failed to bind laminin and act as adhesins. The laminin-binding property and adhesin capacity of two basic host-derived proteins were also tested, and only histones, but not cytochrome c, were able to increase bacterial attachment to ST88-14 cells. Our data suggest that the alanine/lysine-rich sequences shared by Hlp and eukaryotic H1 histones might be involved in the binding of these cationic proteins to laminin.
Resumo:
Fucans, a family of sulfated polysaccharides present in brown seaweed, have several biological activities. Their use as drugs would offer the advantage of no potential risk of contamination with viruses or particles such as prions. A fucan prepared from Spatoglossum schröederi was tested as a possible inhibitor of cell-matrix interactions using wild-type Chinese hamster ovary cells (CHO-K1) and the mutant type deficient in xylosyltransferase (CHO-745). The effect of this polymer on adhesion properties with specific extracellular matrix components was studied using several matrix proteins as substrates for cell attachment. Treatment with the polymer inhibited the adhesion of fibronectin to both CHO-K1 (2 x 10(5))()and CHO-745 (2 x 10(5) and 5 x 10(5)) cells. No effect was detected with laminin, using the two cell types. On the other hand, adhesion to vitronectin was inhibited in CHO-K1 cells and adhesion to type I collagen was inhibited in CHO-745 cells. In spite of this inhibition, the fucan did not affect either cell proliferation or cell cycle. These results demonstrate that this polymer is a new anti-adhesive compound with potential pharmacological applications.
Resumo:
There are few data evaluating biological markers for men with breast cancer. The purpose of the present study was to analyze the expression of the oncogenes c-erbB-2 and c-myc and of the suppressor gene p53 by immunohistochemical techniques in archival paraffin-embedded tissue blocks of 48 male breast cancer patients, treated at the A.C. Camargo Cancer Hospital, São Paulo, SP, Brazil. The results were compared with clinicopathological prognostic features. Immunopositivity of c-erbB-2, p53 and c-myc was detected in 62.5, 16.7 and 20.8% of the cases analyzed, respectively. Estrogen and progesterone receptors were positive in 75 and 69% of the cases, respectively. Increasing staging was statistically associated with c-erbB-2 (P = 0.04) and weakly related to p53 positivity (P = 0.06). No significant correlation between specific survival rate (determined by the log rank test) and the molecular markers analyzed was found, whereas the number of compromised lymph nodes and advanced TNM (tumor, node, metastasis) staging were associated with diminished survival.
Resumo:
The aim of the present study was to evaluate the acidification of the endosome-lysosome system of renal epithelial cells after endocytosis of two human immunoglobulin lambda light chains (Bence-Jones proteins, BJP) obtained from patients with multiple myeloma. Renal epithelial cell handling of two BJP (neutral and acidic BJP) was evaluated by rhodamine fluorescence. Renal cells (MDCK) were maintained in culture and, when confluent, were incubated with rhodamine-labeled BJP for different periods of time. Photos were obtained with a fluorescence microscope (Axiolab-Zeiss). Labeling density was determined on slides with a densitometer (Shimadzu Dual-Wavelength Flying-Spot Scanner CS9000). Endocytosis of neutral and acidic BJP was correlated with acidic intracellular compartment distribution using acridine orange labeling. We compared the pattern of distribution after incubation of native neutral and acidic BJP and after complete deglycosylation of BJP by periodate oxidation. The subsequent alteration of pI converted neutral BJP to acidic BJP. There was a significant accumulation of neutral BJP in endocytic structures, reduced lysosomal acidification, and a diffuse pattern of acidification. This pattern was reversed after total deglycosylation and subsequent alteration of the pI to an acidic BJP. We conclude that the physicochemical characteristics of BJP interfere with intracellular acidification, possibly explaining the strong nephrotoxicity of neutral BJP. Lysosomal acidification is fundamental for adequate protein processing and catabolism.
Resumo:
Previous studies have demonstrated that some components of the leukocyte cell membrane, CR3 (Mac-1, CD11b/CD18) and p150/95, are able to bind to denatured proteins. Thus, it is of interest to know which effector functions of these cells can be triggered by these receptors when they interact with particles or surfaces covered with denatured proteins. In the present study we analyzed their possible role as mediators of phagocytosis of red cells covered with denatured bovine serum albumin (BSA) by mouse peritoneal macrophages. We observed that a) macrophages are able to recognize (bind to) these red cells, b) this interaction can be inhibited by denatured BSA in the fluid phase, c) there is no phagocytosis of these particles by normal macrophages, d) phagocytosis mediated by denatured BSA can be, however, effectively triggered in inflammatory macrophages induced by glycogen or in macrophages activated in vivo with LPS, and e) this phagocytic capacity is strongly dependent on the activity of tyrosine protein kinases in its signal transduction pathway, as demonstrated by using three kinds of enzyme inhibitors (genistein, quercetin and herbimycin A).
Resumo:
Reconstitution of membrane proteins into lipid bilayers is a powerful tool to analyze functional as well as structural areas of membrane protein research. First, the proper incorporation of a purified membrane protein into closed lipid vesicles, to produce proteoliposomes, allows the investigation of transport and/or catalytic properties of any membrane protein without interference by other membrane components. Second, the incorporation of a large amount of membrane proteins into lipid bilayers to grow crystals confined to two dimensions has recently opened a new way to solve their structure at high resolution using electron crystallography. However, reconstitution of membrane proteins into functional proteoliposomes or 2-D crystallization has been an empirical domain, which has been viewed for a long time more like "black magic" than science. Nevertheless, in the last ten years, important progress has been made in acquiring knowledge of lipid-protein-detergent interactions and has permitted to build upon a set of basic principles that has limited the empirical approach of reconstitution experiments. Reconstitution strategies have been improved and new strategies have been developed, facilitating the success rate of proteoliposome formation and 2-D crystallization. This review deals with the various strategies available to obtain proteoliposomes and 2-D crystals from detergent-solubilized proteins. It gives an overview of the methods that have been applied, which may be of help for reconstituting more proteins into lipid bilayers in a form suitable for functional studies at the molecular level and for high-resolution structural analysis.
Resumo:
Cellular Ca2+ signals are crucial in the control of most physiological processes, cell injury and programmed cell death through the regulation of a number of Ca2+-dependent enzymes such as phospholipases, proteases, and nucleases. Mitochondria along with the endoplasmic reticulum play pivotal roles in regulating intracellular Ca2+ content. Mitochondria are endowed with multiple Ca2+ transport mechanisms by which they take up and release Ca2+ across their inner membrane. During cellular Ca2+ overload, mitochondria take up cytosolic Ca2+, which in turn induces opening of permeability transition pores and disrupts the mitochondrial membrane potential (Dym). The collapse of Dym along with the release of cytochrome c from mitochondria is followed by the activation of caspases, nuclear fragmentation and cell death. Members of the Bcl-2 family are a group of proteins that play important roles in apoptosis regulation. Members of this family appear to differentially regulate intracellular Ca2+ level. Translocation of Bax, an apoptotic signaling protein, from the cytosol to the mitochondrial membrane is another step in this apoptosis signaling pathway.
Resumo:
The once obscure members of the 14-3-3 protein family play significant roles in the determination of cell fate. By inhibiting the pro-apoptotic BAD (Bcl-2-antagonist of cell death) and the transcription factor FKHRL-1, 14-3-3 displays important anti-apoptotic characteristics. To date, five points of interaction of 14-3-3 with the apoptotic machinery have been identified. How these interactions are regulated still remains a mystery.
Resumo:
The presence of carbohydrate-binding proteins, namely lectins, ß-galactosidases and amylases, was determined in aqueous extracts of plants collected in Uruguay. Twenty-six extracts were prepared from 15 Uruguayan plants belonging to 12 Phanerogam families. Among them, 18 extracts caused hemagglutination (HAG) that was inhibited by mono- and disaccharides in 13 cases, indicating the presence of lectins. The other 8 extracts did not cause any HAG with the four systems used to detect HAG activity (rabbit and mouse red cells, trypsin-treated rabbit and mouse red cells). For the extracts prepared from Solanum commersonii, HAG activity and HAG inhibition were similar for those prepared from tubers, leaves and fruits, with the chitocompounds being responsible for all the inhibitions. Purification of the S. commersonii tuber lectin was carried out by affinity chromatography on asialofetuin-Sepharose, and SDS-PAGE under reducing conditions gave a single band of Mr of approximately 80 kDa. The monomer N-acetylglucosamine did not inhibit HAG induced by the purified lectin, but chitobiose inhibited HAG at 24 mM and chitotriose inhibited it at 1 mM. ß-Galactosidase activity was detected in leaves and stems of Cayaponia martiana, and in seeds from Datura ferox. Only traces of amylase activity were detected in some of the extracts analyzed. The present screening increases knowledge about the occurrence of carbohydrate-binding proteins present in regional plants.
Resumo:
The current myogenesis and myofibrillogenesis model has been based mostly on in vitro cell culture studies, and, to a lesser extent, on in situ studies in avian and mammalian embryos. While the more isolated artificial conditions of cells in culture permitted careful structural analysis, the actual in situ cellular structures have not been described in detail because the embryos are more difficult to section and manipulate. To overcome these difficulties, we used the optically clear and easy to handle embryos of the zebrafish Danio rerio. We monitored the expression of cytoskeletal and cell-adhesion proteins (actin, myosin, desmin, alpha-actinin, troponin, titin, vimentin and vinculin) using immunofluorescence microscopy and video-enhanced, background-subtracted, differential interference contrast of 24- to 48-h zebrafish embryos. In the mature myotome, the mononucleated myoblasts displayed periodic striations for all sarcomeric proteins tested. The changes in desmin distribution from aggregates to perinuclear and striated forms, although following the same sequence, occurred much faster than in other models. All desmin-positive cells were also positive for myofibrillar proteins and striated, in contrast to that which occurs in cell cultures. Vimentin appeared to be striated in mature cells, while it is developmentally down-regulated in vitro. The whole connective tissue septum between the somites was positive for adhesion proteins such as vinculin, instead of the isolated adhesion plaques observed in cell cultures. The differences in the myogenesis of zebrafish in situ and in cell culture in vitro suggest that some of the previously observed structures and protein distributions in cultures could be methodological artifacts.
Resumo:
Cyanobacteria are well-known for their role in the global production of O2 via photosynthetic water oxidation. However, with the use of light energy, cyanobacteria can also reduce O2. In my thesis work, I have investigated the impact of O2 photoreduction on protection of the photosynthetic apparatus as well as the N2-fixing machinery. Photosynthetic light reactions produce intermediate radicals and reduced electron carriers, which can easily react with O2 to generate various reactive oxygen species. To avoid prolonged reduction of photosynthetic components, cyanobacteria use “electron valves” that dissipate excess electrons from the photosynthetic electron transfer chain in a harmless way. In Synechocystis sp. PCC 6803, flavodiiron proteins Flv1 and Flv3 comprise a powerful electron sink redirecting electrons from the acceptor side of Photosystem I to O2 and reducing it directly to water. In this work, I demonstrate that upon Ci-depletion Flv1/3 can dissipate up to 60% of the electrons delivered from Photosystem II. O2 photoreduction by Flv1/3 was shown to be vital for cyanobacteria in natural aquatic environments and deletion of Flv1/3 was lethal for both Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120 under fluctuating light conditions. The lethal phenotype observed in the absence of Flv1/3 results from oxidative damage to Photosystem I, which appeared to be a primary target of reactive oxygen species produced upon sudden increases in light intensity. Importantly, cyanobacteria also possess other O2 photoreduction pathways which can protect the photosynthetic apparatus. This study demonstrates that respiratory terminal oxidases are also capable of initiating O2 photoreduction in mutant cells lacking the Flv1/3 proteins and grown under fluctuating light. Photoreduction of O2 by Rubisco was also shown in Ci-depleted cells of the mutants lacking Flv1/3, and thus provided the first evidence for active photorespiratory gas-exchange in cyanobacteria. Nevertheless, and despite the existence of other O2 photoreduction pathways, the Flv1/3 route appears to be the most robust and rapid system of photoprotection. Several groups of cyanobacteria are capable of N2 fixation. Filamentous heterocystous N2- fixing species, such as Anabaena sp. PCC 7120, are able to differentiate specialised cells called heterocysts for this purpose. In contrast to vegetative cells which perform oxygenic photosynthesis, heterocysts maintain a microoxic environment for the proper function of the nitrogenase enzyme, which is extremely sensitive to O2. The genome of Anabaena sp. PCC 7120 harbors two copies of genes encoding Flv1 and Flv3 proteins, designated as “A” and “B” forms. In this thesis work, I demonstrate that Flv1A and Flv3A are expressed only in the vegetative cells of filaments, whilst Flv1B and Flv3B are localized exclusively in heterocysts. I further revealed that the Flv3B protein is most responsible for the photoreduction of O2 in heterocysts, and that this reaction plays an important role in protection of the N2-fixing machinery and thus, the provision of filaments with fixed nitrogen. The function of the Flv1B protein remains to be elucidated; however the involvement of this protein in electron transfer reactions is feasible. Evidence provided in this thesis indicates the presence of a great diversity of O2 photoreduction reactions in cyanobacterial cells. These reactions appear to be crucial for the photoprotection of both photosynthesis and N2 fixation processes in an oxygenic environment.
Resumo:
The actin cytoskeleton is a dynamic structure that determines cell shape. Actin turnover is mandatory for migration in normal and malignant cells. In epithelial cancers invasion is frequently accompanied by epithelial to mesenchymal transition (EMT). In EMT, cancer cells acquire a migratory phenotype through transcriptional reprogramming. EMT requires substantial re-organization of actin. During the past decade, new actin regulating proteins have been discovered. Among these are members of the formin family. To study formin expression in tissues and cells, antibodies for detection of formin proteins FMNL1 (Formin-like protein 1), FMNL2 (Formin-like protein 2) and FHOD1 (Formin homology 2 domain containing protein 1) were used. The expression of formins was characterized in normal tissues and selected cancers using immunohistochemistry. The functional roles of formins were studied in cancer cell lines. We found that FMNL2 is widely expressed. It is a filopodial component in cultured melanoma cells. In clinical melanoma, FMNL2 expression has prognostic significance. FHOD1 is a formin expressed in mesenchymal cell types. FHOD1 expression is increased in oral squamous cell carcinoma (SCC) EMT. Importantly, FHOD1 participates in invasion of cultured oral SCC cells. FMNL1 expression is low in normal epithelia, but high in leukocytes and smooth muscle cells. Expression of FMNL1 can be found in carcinoma; we detected FMNL1 expressing cells in basal type of breast cancer. Our results indicate that formins are differentially expressed in normal tissues and that their expression may shift in cancer. Functionally FMNL2 and FHOD1 participate in processes related to cancer progression. Studying formins is increasingly important since they are potential drug targets.
Resumo:
The extract of Ascaris suum suppresses the humoral and cellular immune responses to unrelated antigens in the mouse. In order to further characterize the suppressive components of A. suum, we produced specific monoclonal antibodies which can provide an important tool for the identification of these proteins. The A. suum immunosuppressive fractions isolated by gel filtration from an extract of adult worms were used to immunize BALB/c mice. Popliteal lymph node cells taken from the immunized animals were fused with SP2/O myeloma cells and the cloned hybrid cells obtained were screened to determine the specificity of secreted antibodies. Three monoclonal antibodies named MAIP-1, MAIP-2 and MAIP-3 were selected and were shown to react with different epitopes of high molecular weight proteins from the A. suum extract. All antibody molecules have kappa-type light chains but differ in heavy chain isotype. MAIP-1 is a mouse IgM, MAIP-2 is an IgA immunoglobulin and MAIP-3 is an IgG1 immunoglobulin and they recognize the antigen with affinity constants of 1.3 x 10(10) M-1, 7.1 x 10(9) M-1 and 3.8 x 10(7) M-1, respectively. The proteins recognized by these monoclonal antibodies (PAS-1, PAS-2 and PAS-3) were purified from the crude extract by affinity chromatography and injected with ovalbumin in BALB/c mice in order to determine their suppressive activity on heterologous antibody production. It was demonstrated that these three proteins are able to significantly suppress anti-ovalbumin antibody secretion, with PAS-1 being more efficient than the others.
Resumo:
Cajal bodies (CB) are ubiquitous nuclear structures involved in the biogenesis of small nuclear ribonucleoproteins and show narrow association with the nucleolus. To identify possible relationships between CB and the nucleolus, the localization of coilin, a marker of CB, and of a set of nucleolar proteins was investigated in cultured PtK2 cells undergoing micronucleation. Nocodazol-induced micronucleated cells were examined by double indirect immunofluorescence with antibodies against coilin, fibrillarin, NOR-90/hUBF, RNA polymerase I, PM/Scl, and To/Th. Cells were imaged on a BioRad 1024-UV confocal system attached to a Zeiss Axiovert 100 microscope. Since PtK2 cells possess only one nucleolus organizer region, micronucleated cells presented only one or two micronuclei containing nucleolus. By confocal microscopy we showed that in most micronuclei lacking a typical nucleolus a variable number of round structures were stained by antibodies against fibrillarin, NOR-90/hUBF protein, and coilin. These bodies were regarded as CB-like structures and were not stained by anti-PM/Scl and anti-To/Th antibodies. Anti-RNA polymerase I antibodies also reacted with CB-like structures in some micronuclei lacking nucleolus. The demonstration that a set of proteins involved in RNA/RNP biogenesis, namely coilin, fibrillarin, NOR-90/hUBF, and RNA polymerase I gather in CB-like structures present in nucleoli-devoid micronuclei may contribute to shed some light into the understanding of CB function.
Resumo:
We report here the construction of a vector derived from pET3-His and pRSET plasmids for the expression and purification of recombinant proteins in Escherichia coli based on T7 phage RNA polymerase. The resulting pAE plasmid combined the advantages of both vectors: small size (pRSET), expression of a short 6XHis tag at N-terminus (pET3-His) and a high copy number of plasmid (pRSET). The small size of the vector (2.8 kb) and the high copy number/cell (200-250 copies) facilitate the subcloning and sequencing procedures when compared to the pET system (pET3-His, 4.6 kb and 40-50 copies) and also result in high level expression of recombinant proteins (20 mg purified protein/liter of culture). In addition, the vector pAE enables the expression of a fusion protein with a minimal amino-terminal hexa-histidine affinity tag (a tag of 9 amino acids using XhoI restriction enzyme for the 5'cloning site) as in the case of pET3-His plasmid and in contrast to proteins expressed by pRSET plasmids (a tag of 36 amino acids using BamHI restriction enzyme for the 5'cloning site). Thus, although proteins expressed by pRSET plasmids also have a hexa-histidine tag, the fusion peptide is much longer and may represent a problem for some recombinant proteins.