989 resultados para Hyperspectral data
Resumo:
Developing innovative library services requires a real world understanding of faculty members' desired curricular goals. This study aimed to develop a comprehensive and deeper understanding of Purdue's nutrition science and political science faculties' expectations for student learning related to information and data information literacies. Course syllabi were examined using grounded theory techniques that allowed us to identify how faculty were addressing information and data information literacies in their courses, but it also enabled us to understand the interconnectedness of these literacies to other departmental intentions for student learning, such as developing a professional identity or learning to conduct original research. The holistic understanding developed through this research provides the necessary information for designing and suggesting information literacy and data information literacy services to departmental faculty in ways supportive of curricular learning outcomes.
Resumo:
Rapid advances in sequencing technologies (Next Generation Sequencing or NGS) have led to a vast increase in the quantity of bioinformatics data available, with this increasing scale presenting enormous challenges to researchers seeking to identify complex interactions. This paper is concerned with the domain of transcriptional regulation, and the use of visualisation to identify relationships between specific regulatory proteins (the transcription factors or TFs) and their associated target genes (TGs). We present preliminary work from an ongoing study which aims to determine the effectiveness of different visual representations and large scale displays in supporting discovery. Following an iterative process of implementation and evaluation, representations were tested by potential users in the bioinformatics domain to determine their efficacy, and to understand better the range of ad hoc practices among bioinformatics literate users. Results from two rounds of small scale user studies are considered with initial findings suggesting that bioinformaticians require richly detailed views of TF data, features to compare TF layouts between organisms quickly, and ways to keep track of interesting data points.
Resumo:
This thesis has investigated how to cluster a large number of faces within a multi-media corpus in the presence of large session variation. Quality metrics are used to select the best faces to represent a sequence of faces; and session variation modelling improves clustering performance in the presence of wide variations across videos. Findings from this thesis contribute to improving the performance of both face verification systems and the fully automated clustering of faces from a large video corpus.
Resumo:
Sensor networks for environmental monitoring present enormous benefits to the community and society as a whole. Currently there is a need for low cost, compact, solar powered sensors suitable for deployment in rural areas. The purpose of this research is to develop both a ground based wireless sensor network and data collection using unmanned aerial vehicles. The ground based sensor system is capable of measuring environmental data such as temperature or air quality using cost effective low power sensors. The sensor will be configured such that its data is stored on an ATMega16 microcontroller which will have the capability of communicating with a UAV flying overhead using UAV communication protocols. The data is then either sent to the ground in real time or stored on the UAV using a microcontroller until it lands or is close enough to enable the transmission of data to the ground station.
Resumo:
This technical report describes a Light Detection and Ranging (LiDAR) augmented optimal path planning at low level flight methodology for remote sensing and sampling Unmanned Aerial Vehicles (UAV). The UAV is used to perform remote air sampling and data acquisition from a network of sensors on the ground. The data that contains information on the terrain is in the form of a 3D point clouds maps is processed by the algorithms to find an optimal path. The results show that the method and algorithm are able to use the LiDAR data to avoid obstacles when planning a path from a start to a target point. The report compares the performance of the method as the resolution of the LIDAR map is increased and when a Digital Elevation Model (DEM) is included. From a practical point of view, the optimal path plan is loaded and works seemingly with the UAV ground station and also shows the UAV ground station software augmented with more accurate LIDAR data.
Resumo:
On the basis of local data, we write in support of the conclusions of Smith and Ahern that current Pharmaceu- tical Benefits Scheme (PBS) criteria for tumour necrosis factor (TNF)-a inhibitors in ankylosing spondylitis (AS) are not evidence-based. 1 As a prerequisite to the appropriate use of biological therapy in AS, three aspects of the disease need to be defined: (i) diagnosis, (ii) activity and (iii) therapeutic failure (Table 1)....
Resumo:
This poster presents key features of how QUT’s integrated research data storage and management services work with researchers through their own individual or team research life cycle. By understanding the characteristics of research data, and the long-term need to store this data, QUT has provided resources and tools that support QUT’s goal of being a research intensive institute. Key to successful delivery and operation has been the focus upon researchers’ individual needs and the collaboration between providers, in particular, Information Technology Services, High Performance Computing and Research Support, and QUT Library. QUT’s Research Data Storage service provides all QUT researchers (staff and Higher Degree Research students (HDRs)) with a secure data repository throughout the research data lifecycle. Three distinct storage areas provide for raw research data to be acquired, project data to be worked on, and published data to be archived. Since the service was launched in late 2014, it has provided research project teams from all QUT faculties with acquisition, working or archival data space. Feedback indicates that the storage suits the unique needs of researchers and their data. As part of the workflow to establish storage space for researchers, Research Support Specialists and Research Data Librarians consult with researchers and HDRs to identify data storage requirements for projects and individual researchers, and to select and implement the most suitable data storage services and facilities. While research can be a journey into the unknown[1], a plan can help navigate through the uncertainty. Intertwined in the storage provision is QUT’s Research Data Management Planning tool. Launched in March 2015, it has already attracted 273 QUT staff and 352 HDR student registrations, and over 620 plans have been created (2/10/2015). Developed in collaboration with Office of Research Ethics and Integrity (OREI), uptake of the plan has exceeded expectations.
Resumo:
Bird species richness survey is one of the most intriguing ecological topics for evaluating environmental health. Here, bird species richness denotes the number of unique bird species in a particular area. Factors affecting the investigation of bird species richness include weather, observation bias, and most importantly, the prohibitive costs of conducting surveys at large spatiotemporal scales. Thanks to advances in recording techniques, these problems have been alleviated by deploying sensors for acoustic data collection. Although automated detection techniques have been introduced to identify various bird species, the innate complexity of bird vocalizations, the background noise present in the recording and the escalating volumes of acoustic data pose a challenging task on determination of bird species richness. In this paper we proposed a two-step computer-assisted sampling approach for determining bird species richness in one-day acoustic data. First, a classification model is built based on acoustic indices for filtering out minutes that contain few bird species. Then the classified bird minutes are ordered by an acoustic index and the redundant temporal minutes are removed from the ranked minute sequence. The experimental results show that our method is more efficient in directing experts for determination of bird species compared with the previous methods.
Resumo:
This article describes a maximum likelihood method for estimating the parameters of the standard square-root stochastic volatility model and a variant of the model that includes jumps in equity prices. The model is fitted to data on the S&P 500 Index and the prices of vanilla options written on the index, for the period 1990 to 2011. The method is able to estimate both the parameters of the physical measure (associated with the index) and the parameters of the risk-neutral measure (associated with the options), including the volatility and jump risk premia. The estimation is implemented using a particle filter whose efficacy is demonstrated under simulation. The computational load of this estimation method, which previously has been prohibitive, is managed by the effective use of parallel computing using graphics processing units (GPUs). The empirical results indicate that the parameters of the models are reliably estimated and consistent with values reported in previous work. In particular, both the volatility risk premium and the jump risk premium are found to be significant.
Resumo:
Over the last few decades, there has been a significant land cover (LC) change across the globe due to the increasing demand of the burgeoning population and urban sprawl. In order to take account of the change, there is a need for accurate and up-to-date LC maps. Mapping and monitoring of LC in India is being carried out at national level using multi-temporal IRS AWiFS data. Multispectral data such as IKONOS, Landsat-TM/ETM+, IRS-ICID LISS-III/IV, AWiFS and SPOT-5, etc. have adequate spatial resolution (similar to 1m to 56m) for LC mapping to generate 1:50,000 maps. However, for developing countries and those with large geographical extent, seasonal LC mapping is prohibitive with data from commercial sensors of limited spatial coverage. Superspectral data from the MODIS sensor are freely available, have better temporal (8 day composites) and spectral information. MODIS pixels typically contain a mixture of various LC types (due to coarse spatial resolution of 250, 500 and 1000 in), especially in more fragmented landscapes. In this context, linear spectral unmixing would be useful for mapping patchy land covers, such as those that characterise much of the Indian subcontinent. This work evaluates the existing unmixing technique for LC mapping using MODIS data, using end-members that are extracted through Pixel Purity Index (PPI), Scatter plot and N-dimensional visualisation. The abundance maps were generated for agriculture, built up, forest, plantations, waste land/others and water bodies. The assessment of the results using ground truth and a LISS-III classified map shows 86% overall accuracy, suggesting the potential for broad-scale applicability of the technique with superspectral data for natural resource planning and inventory applications. Index Terms-Remote sensing, digital
Resumo:
Parameterization of sensible heat and momentum fluxes as inferred from an analysis of tower observations archived during MONTBLEX-90 at Jodhpur is proposed, both in terms of standard exchange coefficients C-H and C-D respectively and also according to free convection scaling. Both coefficients increase rapidly at low winds (the latter more strongly) and with increasing instability. All the sensible heat flux data at Jodhpur (wind speed at 10m <(U)over bar (10)>, < 8ms(-1)) also obey free convection scaling, with the flux proportional to the '4/3' power of an appropriate temperature difference such as that between 1 and 30 m. Furthermore, for <(U)over bar (10)> < 4 ms(-1) the momentum flux displays a linear dependence on wind speed.
Resumo:
Big Data and predictive analytics have received significant attention from the media and academic literature throughout the past few years, and it is likely that these emerging technologies will materially impact the mining sector. This short communication argues, however, that these technological forces will probably unfold differently in the mining industry than they have in many other sectors because of significant differences in the marginal cost of data capture and storage. To this end, we offer a brief overview of what Big Data and predictive analytics are, and explain how they are bringing about changes in a broad range of sectors. We discuss the “N=all” approach to data collection being promoted by many consultants and technology vendors in the marketplace but, by considering the economic and technical realities of data acquisition and storage, we then explain why a “n « all” data collection strategy probably makes more sense for the mining sector. Finally, towards shaping the industry’s policies with regards to technology-related investments in this area, we conclude by putting forward a conceptual model for leveraging Big Data tools and analytical techniques that is a more appropriate fit for the mining sector.
Resumo:
The explosive growth in the development of Traditional Chinese Medicine (TCM) has resulted in the continued increase in clinical and research data. The lack of standardised terminology, flaws in data quality planning and management of TCM informatics are preventing clinical decision-making, drug discovery and education. This paper argues that the introduction of data warehousing technologies to enhance the effectiveness and durability in TCM is paramount. To showcase the role of data warehousing in the improvement of TCM, this paper presents a practical model for data warehousing with detailed explanation, which is based on the structured electronic records, for TCM clinical researches and medical knowledge discovery.
Resumo:
Cancer is the leading contributor to the disease burden in Australia. This thesis develops and applies Bayesian hierarchical models to facilitate an investigation of the spatial and temporal associations for cancer diagnosis and survival among Queenslanders. The key objectives are to document and quantify the importance of spatial inequalities, explore factors influencing these inequalities, and investigate how spatial inequalities change over time. Existing Bayesian hierarchical models are refined, new models and methods developed, and tangible benefits obtained for cancer patients in Queensland. The versatility of using Bayesian models in cancer control are clearly demonstrated through these detailed and comprehensive analyses.