998 resultados para Hyper space
Resumo:
Future NASA plans to launch large space strucutres solicit the need for effective vibration control schemes which can solve the unique problems associated with unwanted residual vibration in flexible spacecraft. In this work, a unique method of input command shaping called impulse shaping is examined. A theoretical background is presented along with some insight into the methdos of calculating multiple mode sequences. The Middeck Active Control Experiment (MACE) is then described as the testbed for hardware experiments. These results are shown and some of the difficulties of dealing with nonlinearities are discussed. The paper is concluded with some conclusions about calculating and implementing impulse shaping in complex nonlinear systems.
Resumo:
This dissertation presents a model of the knowledge a person has about the spatial structure of a large-scale environment: the "cognitive map". The functions of the cognitive map are to assimilate new information about the environment, to represent the current position, and to answer route-finding and relative-position problems. This model (called the TOUR model) analyzes the cognitive map in terms of symbolic descriptions of the environment and operations on those descriptions. Knowledge about a particular environment is represented in terms of route descriptions, a topological network of paths and places, multiple frames of reference for relative positions, dividing boundaries, and a structure of containing regions. The current position is described by the "You Are Here" pointer, which acts as a working memory and a focus of attention. Operations on the cognitive map are performed by inference rules which act to transfer information among different descriptions and the "You Are Here" pointer. The TOUR model shows how the particular descriptions chosen to represent spatial knowledge support assimilation of new information from local observations into the cognitive map, and how the cognitive map solves route-finding and relative-position problems. A central theme of this research is that the states of partial knowledge supported by a representation are responsible for its ability to function with limited information of computational resources. The representations in the TOUR model provide a rich collection of states of partial knowledge, and therefore exhibit flexible, "common-sense" behavior.
Resumo:
A model is presented that deals with problems of motor control, motor learning, and sensorimotor integration. The equations of motion for a limb are parameterized and used in conjunction with a quantized, multi-dimensional memory organized by state variables. Descriptions of desired trajectories are translated into motor commands which will replicate the specified motions. The initial specification of a movement is free of information regarding the mechanics of the effector system. Learning occurs without the use of error correction when practice data are collected and analyzed.
Using an Outdoor Learning Space to Teach Sustainability and Material Processes in HE product Design.
Resumo:
The world is facing environmental changes that are increasingly affecting how we think about manufacturing, the consumption of products and use of resources. Within the HE product design community, thinking and designing sustainability’ has evolved to become a natural part of the curriculum. Paradoxical as the rise in awareness of sustainability increases there is growing concern within HE product design of the loss of workshop facilities and as a consequence a demise in teaching traditional object-making skills and material experimentation. We suggest the loss of workshops and tangible ‘learning by making skills’ also creates a lost opportunity for a rich learning resource to address sustainable thinking, design and manufacture ‘praxis’ within HE design education. Furthermore, as learning spaces are frequently discussed in design research, there seems to be little focus on how the use of an outdoor environment might influence learning outcomes particularly with regard to material teaching and sustainability. This 'case study' of two jewellery workshops, used outdoor learning spaces to explore both its impact on learning outcomes and to introduce some key principles of sustainable working methodologies and practices. Academics and students mainly from Norway and Scotland collaborated on this international research project. Participants made models from disposable packaging materials, which were cast in tin, in the sand on a local beach, using found timber to create a heat source for melting the metal. This approach of using traditional making skills, materials and nature was found to be a relevant contribution to a sustainable discourse.
Resumo:
We describe a new hyper-heuristic method NELLI-GP for solving job-shop scheduling problems (JSSP) that evolves an ensemble of heuristics. The ensemble adopts a divide-and-conquer approach in which each heuristic solves a unique subset of the instance set considered. NELLI-GP extends an existing ensemble method called NELLI by introducing a novel heuristic generator that evolves heuristics composed of linear sequences of dispatching rules: each rule is represented using a tree structure and is itself evolved. Following a training period, the ensemble is shown to outperform both existing dispatching rules and a standard genetic programming algorithm on a large set of new test instances. In addition, it obtains superior results on a set of 210 benchmark problems from the literature when compared to two state-of-the-art hyperheuristic approaches. Further analysis of the relationship between heuristics in the evolved ensemble and the instances each solves provides new insights into features that might describe similar instances.
Resumo:
R. Daly and Q. Shen. A Framework for the Scoring of Operators on the Search Space of Equivalence Classes of Bayesian Network Structures. Proceedings of the 2005 UK Workshop on Computational Intelligence, pages 67-74.
Resumo:
Lloyd, Noel G., and Pearson, Jane M., 'Space saving calculation of symbolic resultants', Mathematics in Computer Science, 1 (2007), 267-290.
Resumo:
Sexton, J. (2006). A Cult Film by Proxy: Space is the Place and the Sun Ra Mythos. New Review of Film and Television Studies. 4(3), pp.197-215. RAE2008
Resumo:
Similarly to protein folding, the association of two proteins is driven by a free energy funnel, determined by favorable interactions in some neighborhood of the native state. We describe a docking method based on stochastic global minimization of funnel-shaped energy functions in the space of rigid body motions (SE(3)) while accounting for flexibility of the interface side chains. The method, called semi-definite programming-based underestimation (SDU), employs a general quadratic function to underestimate a set of local energy minima and uses the resulting underestimator to bias further sampling. While SDU effectively minimizes functions with funnel-shaped basins, its application to docking in the rotational and translational space SE(3) is not straightforward due to the geometry of that space. We introduce a strategy that uses separate independent variables for side-chain optimization, center-to-center distance of the two proteins, and five angular descriptors of the relative orientations of the molecules. The removal of the center-to-center distance turns out to vastly improve the efficiency of the search, because the five-dimensional space now exhibits a well-behaved energy surface suitable for underestimation. This algorithm explores the free energy surface spanned by encounter complexes that correspond to local free energy minima and shows similarity to the model of macromolecular association that proceeds through a series of collisions. Results for standard protein docking benchmarks establish that in this space the free energy landscape is a funnel in a reasonably broad neighborhood of the native state and that the SDU strategy can generate docking predictions with less than 5 � ligand interface Ca root-mean-square deviation while achieving an approximately 20-fold efficiency gain compared to Monte Carlo methods.
Resumo:
Space carving has emerged as a powerful method for multiview scene reconstruction. Although a wide variety of methods have been proposed, the quality of the reconstruction remains highly-dependent on the photometric consistency measure, and the threshold used to carve away voxels. In this paper, we present a novel photo-consistency measure that is motivated by a multiset variant of the chamfer distance. The new measure is robust to high amounts of within-view color variance and also takes into account the projection angles of back-projected pixels. Another critical issue in space carving is the selection of the photo-consistency threshold used to determine what surface voxels are kept or carved away. In this paper, a reliable threshold selection technique is proposed that examines the photo-consistency values at contour generator points. Contour generators are points that lie on both the surface of the object and the visual hull. To determine the threshold, a percentile ranking of the photo-consistency values of these generator points is used. This improved technique is applicable to a wide variety of photo-consistency measures, including the new measure presented in this paper. Also presented in this paper is a method to choose between photo-consistency measures, and voxel array resolutions prior to carving using receiver operating characteristic (ROC) curves.
Resumo:
A novel technique to detect and localize periodic movements in video is presented. The distinctive feature of the technique is that it requires neither feature tracking nor object segmentation. Intensity patterns along linear sample paths in space-time are used in estimation of period of object motion in a given sequence of frames. Sample paths are obtained by connecting (in space-time) sample points from regions of high motion magnitude in the first and last frames. Oscillations in intensity values are induced at time instants when an object intersects the sample path. The locations of peaks in intensity are determined by parameters of both cyclic object motion and orientation of the sample path with respect to object motion. The information about peaks is used in a least squares framework to obtain an initial estimate of these parameters. The estimate is further refined using the full intensity profile. The best estimate for the period of cyclic object motion is obtained by looking for consensus among estimates from many sample paths. The proposed technique is evaluated with synthetic videos where ground-truth is known, and with American Sign Language videos where the goal is to detect periodic hand motions.
Resumo:
Version 1.1 of the Hyper Text Transfer Protocol (HTTP) was principally developed as a means for reducing both document transfer latency and network traffic. The rationale for the performance enhancements in HTTP/1.1 is based on the assumption that the network is the bottleneck in Web transactions. In practice, however, the Web server can be the primary source of document transfer latency. In this paper, we characterize and compare the performance of HTTP/1.0 and HTTP/1.1 in terms of throughput at the server and transfer latency at the client. Our approach is based on considering a broader set of bottlenecks in an HTTP transfer; we examine how bottlenecks in the network, CPU, and in the disk system affect the relative performance of HTTP/1.0 versus HTTP/1.1. We show that the network demands under HTTP/1.1 are somewhat lower than HTTP/1.0, and we quantify those differences in terms of packets transferred, server congestion window size and data bytes per packet. We show that when the CPU is the bottleneck, there is relatively little difference in performance between HTTP/1.0 and HTTP/1.1. Surprisingly, we show that when the disk system is the bottleneck, performance using HTTP/1.1 can be much worse than with HTTP/1.0. Based on these observations, we suggest a connection management policy for HTTP/1.1 that can improve throughput, decrease latency, and keep network traffic low when the disk system is the bottleneck.
Resumo:
To provide real-time service or engineer constrained-based paths, networks require the underlying routing algorithm to be able to find low-cost paths that satisfy given Quality-of-Service (QoS) constraints. However, the problem of constrained shortest (least-cost) path routing is known to be NP-hard, and some heuristics have been proposed to find a near-optimal solution. However, these heuristics either impose relationships among the link metrics to reduce the complexity of the problem which may limit the general applicability of the heuristic, or are too costly in terms of execution time to be applicable to large networks. In this paper, we focus on solving the delay-constrained minimum-cost path problem, and present a fast algorithm to find a near-optimal solution. This algorithm, called DCCR (for Delay-Cost-Constrained Routing), is a variant of the k-shortest path algorithm. DCCR uses a new adaptive path weight function together with an additional constraint imposed on the path cost, to restrict the search space. Thus, DCCR can return a near-optimal solution in a very short time. Furthermore, we use the method proposed by Blokh and Gutin to further reduce the search space by using a tighter bound on path cost. This makes our algorithm more accurate and even faster. We call this improved algorithm SSR+DCCR (for Search Space Reduction+DCCR). Through extensive simulations, we confirm that SSR+DCCR performs very well compared to the optimal but very expensive solution.
Resumo:
A learning based framework is proposed for estimating human body pose from a single image. Given a differentiable function that maps from pose space to image feature space, the goal is to invert the process: estimate the pose given only image features. The inversion is an ill-posed problem as the inverse mapping is a one to many process. Hence multiple solutions exist, and it is desirable to restrict the solution space to a smaller subset of feasible solutions. For example, not all human body poses are feasible due to anthropometric constraints. Since the space of feasible solutions may not admit a closed form description, the proposed framework seeks to exploit machine learning techniques to learn an approximation that is smoothly parameterized over such a space. One such technique is Gaussian Process Latent Variable Modelling. Scaled conjugate gradient is then used find the best matching pose in the space of feasible solutions when given an input image. The formulation allows easy incorporation of various constraints, e.g. temporal consistency and anthropometric constraints. The performance of the proposed approach is evaluated in the task of upper-body pose estimation from silhouettes and compared with the Specialized Mapping Architecture. The estimation accuracy of the Specialized Mapping Architecture is at least one standard deviation worse than the proposed approach in the experiments with synthetic data. In experiments with real video of humans performing gestures, the proposed approach produces qualitatively better estimation results.
Resumo:
Particle filtering is a popular method used in systems for tracking human body pose in video. One key difficulty in using particle filtering is caused by the curse of dimensionality: generally a very large number of particles is required to adequately approximate the underlying pose distribution in a high-dimensional state space. Although the number of degrees of freedom in the human body is quite large, in reality, the subset of allowable configurations in state space is generally restricted by human biomechanics, and the trajectories in this allowable subspace tend to be smooth. Therefore, a framework is proposed to learn a low-dimensional representation of the high-dimensional human poses state space. This mapping can be learned using a Gaussian Process Latent Variable Model (GPLVM) framework. One important advantage of the GPLVM framework is that both the mapping to, and mapping from the embedded space are smooth; this facilitates sampling in the low-dimensional space, and samples generated in the low-dimensional embedded space are easily mapped back into the original highdimensional space. Moreover, human body poses that are similar in the original space tend to be mapped close to each other in the embedded space; this property can be exploited when sampling in the embedded space. The proposed framework is tested in tracking 2D human body pose using a Scaled Prismatic Model. Experiments on real life video sequences demonstrate the strength of the approach. In comparison with the Multiple Hypothesis Tracking and the standard Condensation algorithm, the proposed algorithm is able to maintain tracking reliably throughout the long test sequences. It also handles singularity and self occlusion robustly.