934 resultados para Host-specificity
Resumo:
The use of semiochemicals for the manipulation of the pollen beetle, Meliethes aeneus (Fabricius) (Coleoptera: Nitidulidae), is being investigated for potential incorporation into a push-pull strategy for this pest, which damages oilseed rape, Brassica napus L. (Brassicaceae), throughout Europe. Previous laboratory behavioural studies using volatiles from non-host plants showed that M. aeneus is repelled by the odour of lavender, Lavendula angustifolia Mill. (Lamiaceae), essential oil. This article reports on semi-field and field trials to investigate this behaviour under more realistic conditions. Semi-field experiments were conducted to assess the relative importance of olfaction at different points in host location behaviour by M. aeneus. The results showed that oilseed rape plants treated with lavender odour were less colonised by M. aeneus in comparison with an untreated control, but that the treatment effect was much reduced if the lavender odour was applied after colonisation. The field experiment demonstrated that lavender odour caused a significant reduction in the number of adultM. aeneus infesting the oilseed rape plants in the treatment plots compared to the control plots. Overall, these findings are very encouraging for the future development of a push-pull pest control system.
Resumo:
The interplay between dietary nutrients, gut microbiota and mammalian host tissues of the gastrointestinal tract is recognised as highly relevant for host health. Combined transcriptome, metabonome and microbial profiling tools were employed to analyse the dynamic responses of germfree mouse colonic mucosa to colonisation by normal mouse microbiota (conventionalisation) at different time-points during 16 days. The colonising microbiota showed a shift from early (days 1 and 2) to later colonisers (days 8 and 16). The dynamic changes in the microbial community were rapidly reflected by the urine metabolic profiles (day 1) and at later stages (day 4 onward) by the colon mucosa transcriptome and metabolic profiles. Correlations of host transcriptomes, metabolite patterns and microbiota composition revealed associations between Bacilli and Proteobacteria, and differential expression of host genes involved in energy and anabolic metabolism. Differential gene expression correlated with scyllo- and myo-inositol, glutamine, glycine and alanine levels in colonic tissues during the time span of conventionalisation. Our combined time-resolved analyses may help to expand the understanding of host-microbe molecular interactions during the microbial establishment.
Resumo:
Theory and treatment for childhood anxiety disorders typically implicates children’s negative cognitions, yet little is known about the characteristics of thinking styles of clinically anxious children. In particular, it is unclear whether differences in thinking styles between children with anxiety disorders and non-anxious children vary as a function of child age, whether particular cognitive distortions are associated with childhood anxiety disorders at different child ages, and whether cognitive content is disorder-specific. The current study addressed these questions among 120 7 - 12 year old children (53% female) who met diagnostic criteria for social anxiety disorder, other anxiety disorder, or who were not currently anxious. Contrary to expectations, threat interpretation was not inflated amongst anxious compared to non-anxious children at any age, although older (10 - 12 year old) anxious children did differ from non-anxious children on measures of perceived coping. The notion of cognitive-content specificity was not supported across the age-range. The findings challenge current treatment models of childhood anxiety, and suggest that a focus on changing anxious children’s cognitions is not warranted in mid-childhood, and in late childhood cognitive approaches may be better focussed on promoting children’s perceptions of control rather than challenging threat interpretations.
Resumo:
Background: The process of weaning causes a major shift in intestinal microbiota and is a critical period for developing appropriate immune responses in young mammals. Objective: To use a new systems approach to provide an overview of host metabolism and the developing immune system in response to nutritional intervention around the weaning period. Design: Piglets (n¼14) were weaned onto either an eggbased or soya-based diet at 3 weeks until 7 weeks, when all piglets were switched onto a fish-based diet. Half the animals on each weaning diet received Bifidobacterium lactis NCC2818 supplementation from weaning onwards. Immunoglobulin production from immunologically relevant intestinal sites was quantified and the urinary 1H NMR metabolic profile was obtained from each animal at post mortem (11 weeks). Results: Different weaning diets induced divergent and sustained shifts in the metabolic phenotype, which resulted in the alteration of urinary gut microbial co-metabolites, even after 4 weeks of dietary standardisation. B lactis NCC2818 supplementation affected the systemic metabolism of the different weaning diet groups over and above the effects of diet. Additionally, production of gut mucosa-associated IgA and IgM was found to depend upon the weaning diet and on B lactis NCC2818 supplementation. Conclusion: The correlation of urinary 1H NMR metabolic profile with mucosal immunoglobulin production was demonstrated, thus confirming the value of this multiplatform approach in uncovering non-invasive biomarkers of immunity. This has clear potential for translation into human healthcare with the development of urine testing as a means of assessing mucosal immune status. This might lead to early diagnosis of intestinal dysbiosis and with subsequent intervention, arrest disease development. This system enhances our overall understanding of pathologies under supra-organismal control.
Resumo:
Multicellularity evolved well before 600 million years ago, and all multicellular animals have evolved since then with the need to protect against pathogens. There is no reason to expect their immune systems to be any less sophisticated than ours. The vertebrate system, based on rearranging immunoglobulin-superfamily domains, appears to have evolved partly as a result of chance insertion of RAG genes by horizontal transfer. Remarkably sophisticated systems for expansion of immunological repertoire have evolved in parallel in many groups of organisms. Vaccination of invertebrates against commercially important pathogens has been empirically successful, and suggests that the definition of an adaptive and innate immune system should no longer depend on the presence of memory and specificity, since these terms are hard to define in themselves. The evolution of randomly-created immunological repertoire also carries with it the potential for generating autoreactive specificities and consequent autoimmune damage.While invertebrates may use systems analogous to ours to control autoreactive specificities, they may have evolved alternative mechanisms which operate either at the level of individuals-within-populations rather than cells-within-individuals, by linking self-reactive specificities to regulatory pathways and non-self-reactive to effector pathways.
Resumo:
High soil phosphorus (P) concentration is frequently shown to reduce root colonization by arbuscular mycorrhizal (AM) fungi, but the influence of P on the diversity of colonizing AM fungi is uncertain. We used terminal restriction fragment length polymorphism (T-RFLP) of 18S rDNA and cloning to assess diversity of AM fungi colonizing maize (Zea mays), soybean (Glycene max) and field violet (Viola arvensis) at three time points in one season along a P gradient of 10280mgl1 in the field. Percentage AM colonization changed between sampling time points but was not reduced by high soil P except in maize. There was no significant difference in AM diversity between sampling time points. Diversity was reduced at concentrations of P > 25mgl1, particularly in maize and soybean. Both cloning and T-RFLP indicated differences between AM communities in the different host species. Host species was more important than soil P in determining the AM community, except at the highest P concentration. Our results show that the impact of soil P on the diversity of AM fungi colonizing plants was broadly similar, despite the fact that different plants contained different communities. However, subtle differences in the response of the AM community in each host were evident.
Resumo:
Background Staphylococcus aureus is a major cause of healthcare associated mortality, but like many important bacterial pathogens, it is a common constituent of the normal human body flora. Around a third of healthy adults are carriers. Recent evidence suggests that evolution of S. aureus during nasal carriage may be associated with progression to invasive disease. However, a more detailed understanding of within-host evolution under natural conditions is required to appreciate the evolutionary and mechanistic reasons why commensal bacteria such as S. aureus cause disease. Therefore we examined in detail the evolutionary dynamics of normal, asymptomatic carriage. Sequencing a total of 131 genomes across 13 singly colonized hosts using the Illumina platform, we investigated diversity, selection, population dynamics and transmission during the short-term evolution of S. aureus. Principal Findings We characterized the processes by which the raw material for evolution is generated: micro-mutation (point mutation and small insertions/deletions), macro-mutation (large insertions/deletions) and the loss or acquisition of mobile elements (plasmids and bacteriophages). Through an analysis of synonymous, non-synonymous and intergenic mutations we discovered a fitness landscape dominated by purifying selection, with rare examples of adaptive change in genes encoding surface-anchored proteins and an enterotoxin. We found evidence for dramatic, hundred-fold fluctuations in the size of the within-host population over time, which we related to the cycle of colonization and clearance. Using a newly-developed population genetics approach to detect recent transmission among hosts, we revealed evidence for recent transmission between some of our subjects, including a husband and wife both carrying populations of methicillin-resistant S. aureus (MRSA). Significance This investigation begins to paint a picture of the within-host evolution of an important bacterial pathogen during its prevailing natural state, asymptomatic carriage. These results also have wider significance as a benchmark for future systematic studies of evolution during invasive S. aureus disease.
Resumo:
Probiotics are currently being investigated for prevention of infections caused by enteric pathogens. The aim of this in vitro study was to evaluate the influence of three single probiotics: Lactobacillus casei NCIMB 30185 (PXN 37), Lactobacillus acidophilus NCIMB 30184 (PXN 35), Bifidobacterium breve NCIMB 30180 (PXN 25) and a probiotic mixture containing the above strains plus twelve other strains belonging to the Lactobacillus, Bifidobacterium, Lactococcus, Streptococcus and Bacillus genera on the survival of Salmonella Typhimurium and Clostridium difficile using pH-controlled anaerobic batch cultures containing mixed fecal bacteria. Changes in relevant bacterial groups and effects of probiotic addition on survival of the two pathogens were assessed over 24 h. Quantitative analysis of bacterial populations revealed that there was a significant increase in lactobacilli and/or bifidobacteria numbers, depending on probiotic addition, compared with the control (no added probiotic). There was also a significant reduction in S. Typhimurium and C. difficile numbers in the presence of certain probiotics compared with controls. Of the probiotic treatments, two single strains namely L. casei NCIMB 30185 (PXN 37), and B. breve NCIMB 30180 (PXN 25) were the most potent in reducing the numbers of S. Typhimurium and C. difficile. In addition, the supplementation with probiotics into the systems influenced some fermentations parameters. Acetate was found in the largest concentrations in all vessels and lactate and formate were generally detected in higher amounts in vessels with probiotic addition compared to controls.
Resumo:
Simulated multi-model “diversity” in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated “host-model uncertainties” are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is −4.47Wm−2 and the inter-model standard deviation is 0.55Wm−2, corresponding to a relative standard deviation of 12 %. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04Wm−2, and the standard deviation increases to 1.01W−2, corresponding to a significant relative standard deviation of 97 %. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption) is low, with absolute (relative) standard deviations of 0.45Wm−2 (8 %) clear-sky and 0.62Wm−2 (11 %) all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the Aero- Com Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11Wm−2 in the AeroCom Direct Radiative Effect experiment.
Resumo:
The authors examined avoidance personal goals as concurrent (Study 1) and longitudinal (Study 2) predictors of multiple aspects of well-being in the United States and Japan. In both studies, participants adopted more avoidance personal goals in Japan relative to the United States. Both studies also demonstrated that avoidance personal goals were significant negative predictors of the most relevant aspects of well-being in each culture. Specifically, avoidance personal goals were negative predictors of intrapersonal and eudaimonic well-being in the United States and were negative predictors of interpersonal and eudaimonic well-being in Japan. The findings clarify and extend puzzling findings from prior empirical work in this area, and raise provocative possibilities about the nature of avoidance goal pursuit.
Resumo:
1 The recent increase in planting of selected willow clones as energy crops for biomass production has resulted in a need to understand the relationship between commonly grown, clonally propagated genotypes and their pests. 2 For the first time, we present a study of the interactions of six willow clones and a previously unconsidered pest, the giant willow aphid Tuberolachnus salignus. 3 Tuberolachnus salignus alatae displayed no preference between the clones, but there was genetic variation in resistance between the clones; Q83 was the most resistant and led to the lowest reproductive performance in the aphid 4 Maternal effects buffered changes in aphid performance. On four tested willow clones fecundity of first generation aphids on the new host clone was intermediate to that of the second generation and that of the clone used to maintain the aphids in culture. 5 In the field, patterns of aphid infestation were highly variable between years, with the duration of attack being up to four times longer in 1999. In both years there was a significant effect of willow clone on the intensity of infestation. However, whereas Orm had the lowest intensity of infestation in the first year, Dasyclados supported a lower population level than other monitored clones in the second year.
Resumo:
Most prominent models of bilingual representation assume a degree of interconnection or shared representation at the conceptual level. However, in the context of linguistic and cultural specificity of human concepts, and given recent findings that reveal a considerable amount of bidirectional conceptual transfer and conceptual change in bilinguals, a particular challenge that bilingual models face is to account for non-equivalence or partial equivalence of L1 and L2 specific concepts in bilingual conceptual store. The aim of the current paper is to provide a state-of-the-art review of the available empirical evidence from the fields of psycholinguistics, cognitive, experimental, and cross-cultural psychology, and discuss how these may inform and develop further traditional and more recent accounts of bilingual conceptual representation. Based on a synthesis of the available evidence against theoretical postulates of existing models, I argue that the most coherent account of bilingual conceptual representation combines three fundamental assumptions. The first one is the distributed, multi-modal nature of representation. The second one concerns cross-linguistic and cross-cultural variation of concepts. The third one makes assumptions about the development of concepts, and the emergent links between those concepts and their linguistic instantiations.
Resumo:
Many human behaviours and pathologies have been attributed to the putative mirror neuron system, a neural system that is active during both the observation and execution of actions. While there are now a very large number of papers on the mirror neuron system, variations in the methods and analyses employed by researchers mean that the basic characteristics of the mirror response are not clear. This review focuses on three important aspects of the mirror response, as measured by modulations in corticospinal excitability: (1) muscle specificity, (2) direction, and (3) timing of modulation. We focus mainly on electromyographic (EMG) data gathered following single-pulse transcranial magnetic stimulation (TMS), because this method provides precise information regarding these three aspects of the response. Data from paired-pulse TMS paradigms and peripheral nerve stimulation (PNS) are also considered when we discuss the possible mechanisms underlying the mirror response. In this systematic review of the literature, we examine the findings of 85 TMS and PNS studies of the human mirror response, and consider the limitations and advantages of the different methodological approaches these have adopted in relation to discrepancies between their findings. We conclude by proposing a testable model of how action observation modulates corticospinal excitability in humans. Specifically, we propose that action observation elicits an early, non-specific facilitation of corticospinal excitability (at around 90 ms from action onset), followed by a later modulation of activity specific to the muscles involved in the observed action (from around 200 ms). Testing this model will greatly advance our understanding of the mirror mechanism and provide a more stable grounding on which to base inferences about its role in human behaviour.
Resumo:
Natural anti-parasitic compounds in plants such as condensed tannins (CT) have anthelmintic properties against a range of gastrointestinal nematodes, but for other helminths such effects are unexplored. The aim of this study was to assess the effects of CT from three different plant extracts in a model system employing the rat tapeworm, Hymenolepis diminuta, in its intermediate host, Tenebrio molitor. An in vitro study examined infectivity of H. diminuta cysticercoids (excystation success) isolated from infected beetles exposed to different concentrations of CT extracts from pine bark (PB) (Pinus sps), hazelnut pericarp (HN) (Corylus avellana) or white clover flowers (WC) (Trifolium repens), in comparison with the anthelmintic drug praziquantel (positive control). In the in vitro study, praziquantel and CT from all three plant extracts had dose-dependent inhibitory effects on cysticercoid excystation. The HN extract was most effective at inhibiting excystation, followed by PB and WC. An in vivo study was carried out on infected beetles (measured as cysticercoid establishment) fed different doses of PB, HN and praziquantel. There was a highly significant inhibitory effect of HN on cysticercoid development (p = 0.0002). Overall, CT showed a promising anti-cestodal effect against the metacestode stage of H. diminuta.