Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study


Autoria(s): Stier, P.; Schutgens, N. A. J.; Bellouin, Nicolas; Bian, H.; Boucher, O.; Chin, M.; Ghan, S.; Huneeus, N.; Kinne, S.; Lin, G.; Ma, X.; Myhre, G.; Penner, J. E.; Randles, C. A.; Samset, B.; Schulz, M.; Takemura, T.; Yu, F.; Yu, H.; Zhou, C.
Data(s)

2013

Resumo

Simulated multi-model “diversity” in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated “host-model uncertainties” are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is −4.47Wm−2 and the inter-model standard deviation is 0.55Wm−2, corresponding to a relative standard deviation of 12 %. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04Wm−2, and the standard deviation increases to 1.01W−2, corresponding to a significant relative standard deviation of 97 %. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption) is low, with absolute (relative) standard deviations of 0.45Wm−2 (8 %) clear-sky and 0.62Wm−2 (11 %) all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the Aero- Com Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11Wm−2 in the AeroCom Direct Radiative Effect experiment.

Formato

text

Identificador

http://centaur.reading.ac.uk/34632/1/acp-13-3245-2013.pdf

Stier, P., Schutgens, N. A. J., Bellouin, N. <http://centaur.reading.ac.uk/view/creators/90005006.html>, Bian, H., Boucher, O., Chin, M., Ghan, S., Huneeus, N., Kinne, S., Lin, G., Ma, X., Myhre, G., Penner, J. E., Randles, C. A., Samset, B., Schulz, M., Takemura, T., Yu, F., Yu, H. and Zhou, C. (2013) Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study. Atmospheric Chemistry and Physics, 13 (6). pp. 3245-3270. ISSN 1680-7316 doi: 10.5194/acp-13-3245-2013 <http://dx.doi.org/10.5194/acp-13-3245-2013>

Idioma(s)

en

Publicador

Copernicus Publications

Relação

http://centaur.reading.ac.uk/34632/

creatorInternal Bellouin, Nicolas

http://dx.doi.org/10.5194/acp-13-3245-2013

10.5194/acp-13-3245-2013

Direitos

cc_by

Tipo

Article

PeerReviewed