933 resultados para Higher-Order Networks
Resumo:
Dissertação para obtenção do Grau de Doutor em Ciência e Engenharia de Materiais
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Saccharomyces cerevisiae as well as other microorganisms are frequently used in industry with the purpose of obtain different kind of products that can be applied in several areas (research investigation, pharmaceutical compounds, etc.). In order to obtain high yields for the desired product, it is necessary to make an adequate medium supplementation during the growth of the microorganisms. The higher yields are typically reached by using complex media, however the exact formulation of these media is not known. Moreover, it is difficult to control the exact composition of complex media, leading to batch-to-batch variations. So, to overcome this problem, some industries choose to use defined media, with a defined and known chemical composition. However these kind of media, many times, do not reach the same high yields that are obtained by using complex media. In order to obtain similar yield with defined media the addition of many different compounds has to be tested experimentally. Therefore, the industries use a set of empirical methods with which it is tried to formulate defined media that can reach the same high yields as complex media. In this thesis, a defined medium for Saccharomyces cerevisiae was developed using a rational design approach. In this approach a given metabolic network of Saccharomyces cerevisiae is divided into a several unique and not further decomposable sub networks of metabolic reactions that work coherently in steady state, so called elementary flux modes. The EFMtool algorithm was used in order to calculate the EFM’s for two Saccharomyces cerevisiae metabolic networks (amino acids supplemented metabolic network; amino acids non-supplemented metabolic network). For the supplemented metabolic network 1352172 EFM’s were calculated and then divided into: 1306854 EFM’s producing biomass, and 18582 EFM’s exclusively producing CO2 (cellular respiration). For the non-supplemented network 635 EFM’s were calculated and then divided into: 215 EFM’s producing biomass; 420 EFM’s producing exclusively CO2. The EFM’s of each group were normalized by the respective glucose consumption value. After that, the EFMs’ of the supplemented network were grouped again into: 30 clusters for the 1306854 EFMs producing biomass and, 20 clusters for the 18582 EFM’s producing CO2. For the non-supplemented metabolic network the respective EFM’s of each metabolic function were grouped into 10 clusters. After the clustering step, the concentrations of the other medium compounds were calculated by considering a reasonable glucose amount and by accounting for the proportionality between the compounds concentrations and the glucose ratios. The approach adopted/developed in this thesis may allow a faster and more economical way for media development.
Resumo:
Field Lab Entrepreneurial Innovative Ventures
Resumo:
Tese de Doutoramento em Psicologia na área de especialização de Psicologia das Organizações apresentada ao ISPA - Instituto Universitário
Resumo:
The way in which electricity networks operate is going through a period of significant change. Renewable generation technologies are having a growing presence and increasing penetrations of generation that are being connected at distribution level. Unfortunately, a renewable energy source is most of the time intermittent and needs to be forecasted. Current trends in Smart grids foresee the accommodation of a variety of distributed generation sources including intermittent renewable sources. It is also expected that smart grids will include demand management resources, widespread communications and control technologies required to use demand response are needed to help the maintenance in supply-demand balance in electricity systems. Consequently, smart household appliances with controllable loads will be likely a common presence in our homes. Thus, new control techniques are requested to manage the loads and achieve all the potential energy present in intermittent energy sources. This thesis is focused on the development of a demand side management control method in a distributed network, aiming the creation of greater flexibility in demand and better ease the integration of renewable technologies. In particular, this work presents a novel multi-agent model-based predictive control method to manage distributed energy systems from the demand side, in presence of limited energy sources with fluctuating output and with energy storage in house-hold or car batteries. Specifically, here is presented a solution for thermal comfort which manages a limited shared energy resource via a demand side management perspective, using an integrated approach which also involves a power price auction and an appliance loads allocation scheme. The control is applied individually to a set of Thermal Control Areas, demand units, where the objective is to minimize the energy usage and not exceed the limited and shared energy resource, while simultaneously indoor temperatures are maintained within a comfort frame. Thermal Control Areas are overall thermodynamically connected in the distributed environment and also coupled by energy related constraints. The energy split is performed based on a fixed sequential order established from a previous completed auction wherein the bids are made by each Thermal Control Area, acting as demand side management agents, based on the daily energy price. The developed solutions are explained with algorithms and are applied to different scenarios, being the results explanatory of the benefits of the proposed approaches.
Resumo:
Polysaccharides are gaining increasing attention as potential environmental friendly and sustainable building blocks in many fields of the (bio)chemical industry. The microbial production of polysaccharides is envisioned as a promising path, since higher biomass growth rates are possible and therefore higher productivities may be achieved compared to vegetable or animal polysaccharides sources. This Ph.D. thesis focuses on the modeling and optimization of a particular microbial polysaccharide, namely the production of extracellular polysaccharides (EPS) by the bacterial strain Enterobacter A47. Enterobacter A47 was found to be a metabolically versatile organism in terms of its adaptability to complex media, notably capable of achieving high growth rates in media containing glycerol byproduct from the biodiesel industry. However, the industrial implementation of this production process is still hampered due to a largely unoptimized process. Kinetic rates from the bioreactor operation are heavily dependent on operational parameters such as temperature, pH, stirring and aeration rate. The increase of culture broth viscosity is a common feature of this culture and has a major impact on the overall performance. This fact complicates the mathematical modeling of the process, limiting the possibility to understand, control and optimize productivity. In order to tackle this difficulty, data-driven mathematical methodologies such as Artificial Neural Networks can be employed to incorporate additional process data to complement the known mathematical description of the fermentation kinetics. In this Ph.D. thesis, we have adopted such an hybrid modeling framework that enabled the incorporation of temperature, pH and viscosity effects on the fermentation kinetics in order to improve the dynamical modeling and optimization of the process. A model-based optimization method was implemented that enabled to design bioreactor optimal control strategies in the sense of EPS productivity maximization. It is also critical to understand EPS synthesis at the level of the bacterial metabolism, since the production of EPS is a tightly regulated process. Methods of pathway analysis provide a means to unravel the fundamental pathways and their controls in bioprocesses. In the present Ph.D. thesis, a novel methodology called Principal Elementary Mode Analysis (PEMA) was developed and implemented that enabled to identify which cellular fluxes are activated under different conditions of temperature and pH. It is shown that differences in these two parameters affect the chemical composition of EPS, hence they are critical for the regulation of the product synthesis. In future studies, the knowledge provided by PEMA could foster the development of metabolically meaningful control strategies that target the EPS sugar content and oder product quality parameters.
Resumo:
What role do social networks play in determining migrant labor market outcomes? We examine this question using data from a random sample of 1500 immigrants living in Ireland. We propose a theoretical model formally predicting that immigrants with more contacts have additional access to job offers, and are therefore better able to become employed and choose higher paid jobs. Our empirical analysis confirms these findings, while focusing more generally on the relationship between migrants’ social networks and a variety of labor market outcomes (namely wages, employment, occupational choice and job security), contrary to the literature. We find evidence that having one more contact in the network is associated with an increase of 11pp in the probability of being employed and with an increase of about 100 euros in the average salary. However, our data is not suggestive of a network size effect on occupational choice and job security. Our findings are robust to sample selection and other endogeneity concerns.
Resumo:
This work is devoted to the broadband wireless transmission techniques, which are serious candidates to be implemented in future broadband wireless and cellular systems, aiming at providing high and reliable data transmission and concomitantly high mobility. In order to cope with doubly-selective channels, receiver structures based on OFDM and SC-FDE block transmission techniques, are proposed, which allow cost-effective implementations, using FFT-based signal processing. The first subject to be addressed is the impact of the number of multipath components, and the diversity order, on the asymptotic performance of OFDM and SC-FDE, in uncoded and for different channel coding schemes. The obtained results show that the number of relevant separable multipath components is a key element that influences the performance of OFDM and SC-FDE schemes. Then, the improved estimation and detection performance of OFDM-based broadcasting systems, is introduced employing SFN (Single Frequency Network) operation. An initial coarse channel is obtained with resort to low-power training sequences estimation, and an iterative receiver with joint detection and channel estimation is presented. The achieved results have shown very good performance, close to that with perfect channel estimation. The next topic is related to SFN systems, devoting special attention to time-distortion effects inherent to these networks. Typically, the SFN broadcast wireless systems employ OFDM schemes to cope with severely time-dispersive channels. However, frequency errors, due to CFO, compromises the orthogonality between subcarriers. As an alternative approach, the possibility of using SC-FDE schemes (characterized by reduced envelope fluctuations and higher robustness to carrier frequency errors) is evaluated, and a technique, employing joint CFO estimation and compensation over the severe time-distortion effects, is proposed. Finally, broadband mobile wireless systems, in which the relative motion between the transmitter and receiver induces Doppler shift which is different or each propagation path, is considered, depending on the angle of incidence of that path in relation to the direction of travel. This represents a severe impairment in wireless digital communications systems, since that multipath propagation combined with the Doppler effects, lead to drastic and unpredictable fluctuations of the envelope of the received signal, severely affecting the detection performance. The channel variations due this effect are very difficult to estimate and compensate. In this work we propose a set of SC-FDE iterative receivers implementing efficient estimation and tracking techniques. The performance results show that the proposed receivers have very good performance, even in the presence of significant Doppler spread between the different groups of multipath components.
Resumo:
What role do social networks play in determining migrant labor market outcomes? We examine this question using data from a random sample of 1500 immigrants living in Ireland. We propose a theoretical model formally predicting that immigrants with more contacts have additional access to job offers, and are therefore better able to become employed and choose higher paid jobs. Our empirical analysis confirms these findings, while focusing more generally on the relationship between migrants’ social networks and a variety of labor market outcomes (namely wages, employment, occupational choice and job security), contrary to the literature. We find evidence that having one more contact in the network is associated with an increase of 11pp in the probability of being employed and with an increase of about 100 euros in the average salary. However, our data is not suggestive of a network size effect on occupational choice and job security. Our findings are robust to sample selection and other endogeneity concerns.
Resumo:
Transcriptional Regulatory Networks (TRNs) are powerful tool for representing several interactions that occur within a cell. Recent studies have provided information to help researchers in the tasks of building and understanding these networks. One of the major sources of information to build TRNs is biomedical literature. However, due to the rapidly increasing number of scientific papers, it is quite difficult to analyse the large amount of papers that have been published about this subject. This fact has heightened the importance of Biomedical Text Mining approaches in this task. Also, owing to the lack of adequate standards, as the number of databases increases, several inconsistencies concerning gene and protein names and identifiers are common. In this work, we developed an integrated approach for the reconstruction of TRNs that retrieve the relevant information from important biological databases and insert it into a unique repository, named KREN. Also, we applied text mining techniques over this integrated repository to build TRNs. However, was necessary to create a dictionary of names and synonyms associated with these entities and also develop an approach that retrieves all the abstracts from the related scientific papers stored on PubMed, in order to create a corpora of data about genes. Furthermore, these tasks were integrated into @Note, a software system that allows to use some methods from the Biomedical Text Mining field, including an algorithms for Named Entity Recognition (NER), extraction of all relevant terms from publication abstracts, extraction relationships between biological entities (genes, proteins and transcription factors). And finally, extended this tool to allow the reconstruction Transcriptional Regulatory Networks through using scientific literature.
Resumo:
Tese de Doutoramento em Psicologia Clínica / Psicologia
Resumo:
Tese de Doutoramento em Engenharia Civil.
Resumo:
Dissertação de mestrado em Ciências da Educação (área de especialização em Tecnologia Educativa)