949 resultados para High frequency ultrasound


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geophysical inversion is a theory that transforms the observation data into corresponding geophysical models. The goal of seismic inversion is not only wave velocity models, but also the fine structures and dynamic process of interior of the earth, expanding to more parameters such as density, aeolotropism, viscosity and so on. As is known to all, Inversion theory is divided to linear and non-linear inversion theories. In rencent 40 years linear inversion theory has formed into a complete and systematic theory and found extensive applications in practice. While there are still many urgent problems to be solved in non-linear inversion theory and practice. Based on wave equation, this dissertation has been mainly involved in the theoretical research of several non-linear inversion methods: waveform inversion, traveltime inversion and the joint inversion about two methods. The objective of gradient waveform inversion is to find a geologic model, thus synthetic seismograms generated by this geologic model are best fitted to observed seismograms. Contrasting with other inverse methods, waveform inversion uses all characteristics of waveform and has high resolution capacity. But waveform inversion is an interface by interface method. An artificial parameter limit should be provided in each inversion iteration. In addition, waveform information will tend to get stuck in local minima if the starting model is too far from the actual model. Based on velocity scanning in traditional seismic data processing, a layer-by-layer waveform inversion method is developed in this dissertation to deal with weaknesses of waveform inversion. Wave equation is used to calculate the traveltime and derivative (perturbation of traveltime with respect to velocity) in wave-equation traveltime inversion (WT). Unlike traditional ray-based travetime inversion, WT has many advantages. No ray tracing or traveltime picking and no high frequency assumption is necessary and good result can be got while starting model is far from real model. But, comparing with waveform inversion, WT has low resolution. Waveform inversion and WT have complementary advantages and similar algorithm, which proves that the joint inversion is a better inversion method. And another key point which this dissertation emphasizes is how to give fullest play to their complementary advantages on the premise of no increase of storage spaces and amount of calculation. Numerical tests are implemented to prove the feasibility of inversion methods mentioned above in this dissertation. Especially for gradient waveform inversion, field data are inversed. This field data are acquired by our group in Wali park and Shunyi district. Real data processing shows there are many problems for waveform inversion to deal with real data. The matching of synthetic seismograms with observed seismograms and noise cancellation are two primary problems. In conclusion, on the foundation of the former experiences, this dissertation has implemented waveform inversions on the basis of acoustic wave equation and elastic wave equation, traveltime inversion on the basis of acoustic wave equation and traditional combined waveform traveltime inversion. Besides the traditional analysis of inversion theory, there are two innovations: layer by layer inversion of seimic reflection data inversion and rapid method for acoustic wave-equation joint inversion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Research of Seismic Recognition Techniques for Gas Reservoir Shang Yong_sheng(Geophysics) Directed by Yang Chang-chun Abstract Gas reservior is one of the most important nature resources. Someone forecast that the output will exceed crude oil in 2015 and become the largest energy source. Recently,more and more gas reservior are discovered as the oil field and gas filed exploration go deep into development. Although the gas proved reserves rise greatly the explorative degree of natural gas resource in our country is still very low. The potential of gas exploration is very great and our task is so hard. How to recognise and discover new gas reservoir is the first task based on the great gas reservior resources foreground. the gas reservior in different oil and gas field have its special gas generation, reservoiring, physical property conditions. However,it may have the same geophysical characters. So,it is very important to analyse, research, summarizing the geophysical characters of the gas reservior and make use of the characters to identify the gas layer effectively. This paper start with modeling,and it discuss the geophysical characters of the gas reservior response. It analyse the seismical wave characters of the gas reservoir. Furthermore, it summarize the method of using the seismica profile to identify the gas reservior directly. The paper discuss the research of extracting diffraction wave for mass diffraction wave grow at the edge of the gas reservoir at the seismic section. Making use of the technique of extracting diffraction wave to identify the gas reservior is the first experiment of the gas reservoir prediction technique. The avo technology is a new geophysical method. From the pre-stack analysis, this paper discuss the technique of using the rich information to identify the gas reservoir. Based on the case study of the Qidam basin and the Hailaer basin it discuss the method of predicating gas reservoir using pre-stack information. It include pre-stack amplitude preserve process, AVO modeling, fluid replacement technique, AVO analysis and interpretation technique. The paper summarize a gas reservoir prediction procedure focusing on the pre-stack information. The seismic wave will cause great attenuation when it pass through the gas layer and the high frequency component loss. This paper discuss the technique of extracting seismic attributes to represent the attenuation degree of seismica wave. Based on the attenuation attributes,it does the research of the gas reservor identification and prediction. At last,the paper discuss the method of calculating the azimuthal anisotropy to predict the fracture reservoir. Keyword: gas reservoir, diffraction wave, AVO, attenuation attribute,fracture prediction

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To extend the cross-hole seismic 2D data to outside 3D seismic data, reconstructing the low frequency data to high frequency data is necessary. Blind deconvolution method is a key technology. In this paper, an implementation of Blind deconvolution is introduced. And optimized precondition conjugate gradient method is used to improve the stability of the algorithm and reduce the computation. Then high-frequency retrieved Seismic data and the cross-hole seismic data is combined for constraint inversion. Real data processing proved the method is effective. To solve the problem that the seismic data resolution can’t meet the request of reservoir prediction in the river face thin-layers in Chinese eastern oil fields, a high frequency data reconstruction method is proposed. The extrema of the seismic data are used to get the modulation function which operated with the original seismic data to get the high frequency part of the reconstruction data to rebuild the wide band data. This method greatly saves the computation, and easy to adjust the parameters. In the output profile, the original features of the seismic events are kept, the common feint that breaking the events and adding new zeros to produce alias is avoided. And the interbeded details are enhanced compared to the original profiles. The effective band of seismic data is expended and the method is approved by the processing of the field data. Aim to the problem in the exploration and development of Chinese eastern oil field that the high frequency log data and the relative low frequency seismic data can’t be merged, a workflow of log data extrapolation constrained by time-phase model based on local wave decomposition is raised. The seismic instantaneous phase is resolved by local wave decomposition to build time-phase model, the layers beside the well is matched to build the relation of log and seismic data, multiple log info is extrapolated constrained by seismic equiphase map, high precision attributes inverse sections are produced. In the course of resolve the instantaneous phase, a new method of local wave decomposition --Hilbert transform mean mode decomposition(HMMD) is raised to improve the computation speed and noise immunity. The method is applied in the high resolution reservoir prediction in Mao2 survey of Daqing oil field, Multiple attributes profiles of wave impedance, gamma-ray, electrical resistivity, sand membership degree are produced, of which the resolution is high and the horizontal continuous is good. It’s proved to be a effective method for reservoir prediction and estimation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the deeply development of exploration and development in petroleum in China, new increasing reserves are found in old oil fields and the verge of the old ones through re-study of geological property. It is more and more important to discovery and develop thin layer or thin inter-bedded layers reservoirs. All of the targets are thin sand-shale inter-bedded reservoirs and the core technology is reservoir predictions between wells in thin sand-shale inter-bedded layers. The continuity of the thin sand-shale inter-bedded layers in space or separating and heterogeneity is the key of reservoir geology research. The seismic reflection, high resolution analysis method and inversion method to thin sand-shale inter-bedded layers are thorough discussed and deeply studied in this paper to try to find the methods and resolutions of reservoir geology research. The below is followed. 1. Based on the pre-research of other people, five models are created: the sand sphenoid body, interlay sandstone and interlay shale of the equal thickness, interlay sandstone of the equal thickness and interlay shale of the unequal thickness, interlay sandstone of the unequal thickness and interlay shale of the unequal thickness, interlay sandstone of the changing thickness in sequence and interlay shale of the changing thickness in sequence. Then the study of the forward modeling are conducted on the thin layer and thin inter-bedded layers geological characters and seismic reflections including amplitude, frequency, phase, wave shape and time-frequency responding in the domains of time and frequency. The affect of petro-physics difference of layers, single thin layer thickness, thickness of inter-bedded, layer number of inter-bedded, incident wavelet domain frequency and types, sample interval to seismic reflection characters, frequency spectrum and time-frequency respond of reflectivity is theoretically discussed. 2. Qualitatively analyzing the sedimentary rhythm of the thin inter-bedded layers in vertical orientation and computing the single layer thickness or the average thickness with the method of generalized S transform. Identifying the reflecting interface or lithology interface using the amplitude value of amplitude spectrum domain frequency. 3. Based on the seismic respond of thin sand-shale inter-bedded layers, bring out the high resolution analysis method of seismic data in thin sand-shale inter-bedded layers using wavelet analysis and the idea of affecting low and high frequency with middle frequency. Then analyzing the effect to the method and testing some wavelets in the method. This method is applied to the theoretical models and the field data. 4. Bring forward one improved very fast simulated annealing method (IVFSA) to resolve the problem nonlinearity and multi-parameters of the inversion in thin inter-bedded layers. And IVFSA is more productive and higher precision than general ways. 5. New target constrained function is used in the inversion based on the property of the inversion in thin inter-bedded layers. 6. Making the full use of geological and logging information, IVFSA and the new function are applied in the non-linear inversion to improve reservoir prediction and evaluation in thin inter-bedded formations combined with the idea of logging and seismic inversion. This method was applied to the field data and got good results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the prediction of complex reservoir with high heterogeneities in lithologic and petrophysical properties, because of inexact data (e.g., information-overlapping, information-incomplete, and noise-contaminated) and ambiguous physical relationship, inversion results suffer from non-uniqueness, instability and uncertainty. Thus, the reservoir prediction technologies based on the linear assumptions are unsuited for these complex areas. Based on the limitations of conventional technologies, the thesis conducts a series of researches on various kernel problems such as inversions from band-limited seismic data, inversion resolution, inversion stability, and ambiguous physical relationship. The thesis combines deterministic, statistical and nonlinear theories of geophysics, and integrates geological information, rock physics, well data and seismic data to predict lithologic and petrophysical parameters. The joint inversion technology is suited for the areas with complex depositional environment and complex rock-physical relationship. Combining nonlinear multistage Robinson seismic convolution model with unconventional Caianiello neural network, the thesis implements the unification of the deterministic and statistical inversion. Through Robinson seismic convolution model and nonlinear self-affine transform, the deterministic inversion is implemented by establishing a deterministic relationship between seismic impedance and seismic responses. So, this can ensure inversion reliability. Furthermore, through multistage seismic wavelet (MSW)/seismic inverse wavelet (MSIW) and Caianiello neural network, the statistical inversion is implemented by establishing a statistical relationship between seismic impedance and seismic responses. Thus, this can ensure the anti-noise ability. In this thesis, direct and indirect inversion modes are alternately used to estimate and revise the impedance value. Direct inversion result is used as the initial value of indirect inversion and finally high-resolution impedance profile is achieved by indirect inversion. This largely enhances inversion precision. In the thesis, a nonlinear rock physics convolution model is adopted to establish a relationship between impedance and porosity/clay-content. Through multistage decomposition and bidirectional edge wavelet detection, it can depict more complex rock physical relationship. Moreover, it uses the Caianiello neural network to implement the combination of deterministic inversion, statistical inversion and nonlinear theory. Last, by combined applications of direct inversion based on vertical edge detection wavelet and indirect inversion based on lateral edge detection wavelet, it implements the integrative application of geological information, well data and seismic impedance for estimation of high-resolution petrophysical parameters (porosity/clay-content). These inversion results can be used to reservoir prediction and characterization. Multi-well constrains and separate-frequency inversion modes are adopted in the thesis. The analyses of these sections of lithologic and petrophysical properties show that the low-frequency sections reflect the macro structure of the strata, while the middle/high-frequency sections reflect the detailed structure of the strata. Therefore, the high-resolution sections can be used to recognize the boundary of sand body and to predict the hydrocarbon zones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To deal with the problems in multi-component converted seismic wave exploration in coal fields, the wave propagating features and imaging methods of multi-component converted waves in coal measure strata are researched in this thesis firstly. The relations between viscoelasticity and anisotropy in coal measure strata are analyzed to build KEL-TI model, and which seismic wave propagating and attenuating features are researched. The disadvantages of converted wave imaging methods based on common converted point gather are analyzed and constant velocity no NMO converted wave imaging method based on common scattering point gather is put forward, according to Huygens-Fresnel principle, which applicabilities in the elastic isotropic, elastic TI and KEL-TI situations are discussed. To different model simulation data, the common scattering point gathers’ and stacked profiles’ features are analyzed. The results show that the method can image compressional waves and converted waves with high precision. Secondly, the resolution enhancing theories and methods of converted wave are researched by Rayleigh wave suppressing, converted wave static correction and poststack inverse-Q filtering. 1) The polarization filter is designed by the instantaneous polarization information of seismic waves, and the Rayleigh wave suppressing method is researched. From the spectrum analysis before and after filtering, it can be derived that the amplitudes are kept relatively. 2) To constant velocity no NMO converted wave imaging method, the static correction method based on common equivalent offset point gather is put forward and tested to the actual converted waves. 3) The relation between equivalent quality factor of converted wave, compressional wave quality factor and the ratio of compressional to shear wave velocity is derived. The compressional wave quality inversion method by first arrivals of none-offset VSP is researched, and which is then transformed to the equivalent quality factor to perform inverse-Q filtering of actual converted waves. The result has shown that the method can recover the high frequency energy of converted waves. At last, the theories and methods researched in this thesis are practiced to the 3D3C seismic exploration in Guqiao coal mine in Huainan and achieve good results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Scale matching method means adjusting information with different scale to the same level. This thesis focuses on scale unification of information with different frequency bandwidth. Well-seismic cooperate inversion is an important component of reservoir geophysics; multiple prediction & subtraction is a development of multiple attenuation in recent years. The common ground of these two methods is that they both related to different frequency bandwidth unification. Well log、cross-hole seismic、VSP、3D seismic and geological information have different spatial resolution, we can decrease multi-solution of reservoir inversion and enhance the vertical and lateral resolution of the geological object by integrate those information together; Compare the predicted multiple generated by SRME with the real multiple, we find the predicted multiple convolutes at least one wavelet more, which brings frequency bandwidth difference between them. So the subtraction method also relates to multi-scale information unification. This thesis gives a method of well constrained seismic high resolution processing basing on auto gain control modulation. It uses base function method which utilizes original well-seismic match result as initial condition and processed seismic trace as initial model to extrapolate the high frequency information of the well logs to the seismic profiles. In this way we can broaden the bandwidth of the seismic and make the high frequency gain geological meaning. In this thesis we introduce the revised base function method to adaptive subtraction and verify the validity of the method using models. Key words: high frequency reconstruction, scale matching, base function, multiple, SRME prediction & subtraction

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As a fast and effective method for approximate calculation of seismic numerical simulation, ray tracing method, which has important theory and practical application value, in terms of seismic theory and seismic simulation, inversion, migration, imaging, simplified from seismic theory according to geometric seismic, means that the main energy of seismic wave field propagates along ray paths in condition of high-frequency asymptotic approximation. Calculation of ray paths and traveltimes is one of key steps in seismic simulation, inversion, migration, and imaging. Integrated triangular grids layout on wavefront with wavefront reconstruction ray tracing method, the thesis puts forward wavefront reconstruction ray tracing method based on triangular grids layout on wavefront, achieves accurate and fast calculation of ray paths and traveltimes. This method has stable and reasonable ray distribution, and overcomes problems caused by shadows in conventional ray tracing methods. The application of triangular grids layout on wavefront, keeps all the triangular grids stable, and makes the division of grids and interpolation of a new ray convenient. This technology reduces grids and memory, and then improves calculation efficiency. It enhances calculation accuracy by accurate and effective description and division on wavefront. Ray tracing traveltime table, which shares the character of 2-D or 3-D scatter data, has great amount of data points in process of seismic simulation, inversion, migration, and imaging. Therefore the traveltime table file will be frequently read, and the calculation efficiency is very low. Due to these reasons, reasonable traveltime table compression will be very necessary. This thesis proposes surface fitting and scattered data compression with B-spline function method, applies to 2-D and 3-D traveltime table compression. In order to compress 2-D (3-D) traveltime table, first we need construct a smallest rectangular (cuboidal) region with regular grids to cover all the traveltime data points, through the coordinate range of them in 2-D surface (3-D space). Then the value of finite regular grids, which are stored in memory, can be calculated using least square method. The traveltime table can be decompressed when necessary, according to liner interpolation method of 2-D (3-D) B-spline function. In the above calculation, the coefficient matrix is stored using sparse method and the liner system equations are solved using LU decomposition based on the multi-frontal method according to the sparse character of the least square method matrix. This method is practiced successfully in several models, and the cubic B-spline function can be the best basal function for surface fitting. It make the construction surface smooth, has stable and effective compression with high approximate accuracy using regular grids. In this way, through constructing reasonable regular grids to insure the calculation efficiency and accuracy of compression and surface fitting, we achieved the aim of traveltime table compression. This greatly improves calculation efficiency in process of seismic simulation, inversion, migration, and imaging.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the deepening development of oil-gas exploration and the sharp rise in costs, modern seismic techniques had been progressed rapidly. The Seismic Inversion Technique extracts seismic attribute from the seismic reflection data, inverses the underground distribution of wave impedance or speed, estimates reservoir parameters, makes some reservoir prediction and oil reservoir description as a key technology of Seismic exploration, which provides a reliable basic material for oil-gas exploration. Well-driven SI is essentially an seismic-logging joint inversion. The low, high-frequency information comes from the logging information, while the structural characteristics and medium frequency band depend on the seismic data. Inversion results mainly depend on the quality of raw data, the rationality of the process, the relativity of synthetic and seismic data, etc. This paper mainly research on how the log-to-seismic correlation have affected the well-driven seismic inversion precision. Synthetic, the comparison between middle –frequency borehole impedance and relative seismic impedance and well-attribute crossplots have been taken into account the log-to-seismic correlation. The results verify that the better log-to-seismic correlation, the more reliable the seismic inversion result, through the analysis of three real working area (Qikou Sag, Qiongdongnan basin, Sulige gas field).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The modeling formula based on seismic wavelet can well simulate zero - phase wavelet and hybrid-phase wavelet, and approximate maximal - phase and minimal - phase wavelet in a certain sense. The modeling wavelet can be used as wavelet function after suitable modification item added to meet some conditions. On the basis of the modified Morlet wavelet, the derivative wavelet function has been derived. As a basic wavelet, it can be sued for high resolution frequency - division processing and instantaneous feature extraction, in acoordance with the signal expanding characters in time and scale domains by each wavelet structured. Finally, an application example proves the effectiveness and reasonability of the method. Based on the analysis of SVD (Singular Value Decomposition) filter, by taking wavelet as basic wavelet and combining SVD filter and wavelet transform, a new de - noising method, which is Based on multi - dimension and multi-space de - noising method, is proposed. The implementation of this method is discussed the detail. Theoretical analysis and modeling show that the method has strong capacity of de - noising and keeping attributes of effective wave. It is a good tool for de - noising when the S/N ratio is poor. To give prominence to high frequency information of reflection event of important layer and to take account of other frequency information under processing seismic data, it is difficult for deconvolution filter to realize this goal. A filter from Fourier Transform has some problems for realizing the goal. In this paper, a new method is put forward, that is a method of processing seismic data in frequency division from wavelet transform and reconstruction. In ordinary seismic processing methods for resolution improvement, deconvolution operator has poor part characteristics, thus influencing the operator frequency. In wavelet transform, wavelet function has very good part characteristics. Frequency - division data processing in wavelet transform also brings quite good high resolution data, but it needs more time than deconvolution method does. On the basis of frequency - division processing method in wavelet domain, a new technique is put forward, which involves 1) designing filter operators equivalent to deconvolution operator in time and frequency domains in wavelet transform, 2) obtaining derivative wavelet function that is suitable to high - resolution seismic data processing, and 3) processing high resolution seismic data by deconvolution method in time domain. In the method of producing some instantaneous characteristic signals by using Hilbert transform, Hilbert transform is very sensitive to high - frequency random noise. As a result, even though there exist weak high - frequency noises in seismic signals, the obtained instantaneous characteristics of seismic signals may be still submerged by the noises. One method for having instantaneous characteristics of seismic signals in wavelet domain is put forward, which obtains directly the instantaneous characteristics of seismic signals by taking the characteristics of both the real part (real signals, namely seismic signals) and the imaginary part (the Hilbert transfom of real signals) of wavelet transform. The method has the functions of frequency division and noise removal. What is more, the weak wave whose frequency is lower than that of high - frequency random noise is retained in the obtained instantaneous characteristics of seismic signals, and the weak wave may be seen in instantaneous characteristic sections (such as instantaneous frequency, instantaneous phase and instantaneous amplitude). Impedance inversion is one of tools in the description of oil reservoir. one of methods in impedance inversion is Generalized Linear Inversion. This method has higher precision of inversion. But, this method is sensitive to noise of seismic data, so that error results are got. The description of oil reservoir in researching important geological layer, in order to give prominence to geological characteristics of the important layer, not only high frequency impedance to research thin sand layer, but other frequency impedance are needed. It is difficult for some impedance inversion method to realize the goal. Wavelet transform is very good in denoising and processing in frequency division. Therefore, in the paper, a method of impedance inversion is put forward based on wavelet transform, that is impedance inversion in frequency division from wavelet transform and reconstruction. in this paper, based on wavelet transform, methods of time - frequency analysis is given. Fanally, methods above are in application on real oil field - Sansan oil field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Impedance inversion is very important in seismic technology. It is based on seismic profile. Good inversion result is derived from high quality seismic profile, which is formed using high resolution imaging resolution. High-resolution process demands that signal/noise ratio is high. It is very important for seismic inversion to improve signal/noise ratio. the main idea is that the physical parameter (wave impedance), which describes the stratigraphy directly, is achieved from seismic data expressing structural style indirectly. The solution of impedance inversion technology, which is based on convolution model, is arbitrary. It is a good way to apply the priori information as the restricted condition in inversion. An updated impedance inversion technology is presented which overcome the flaw of traditional model and highlight the influence of structure. Considering impedance inversion restricted by sedimentary model, layer filling style and congruence relation, the impedance model is built. So the impedance inversion restricted by geological rule could be realized. there are some innovations in this dissertation: 1. The best migration aperture is achieved from the included angle of time surface of diffracted wave and reflected wave. Restricted by structural model, the dip of time surface of reflected wave and diffracted wave is given. 2. The conventional method of FXY forcasting noise is updated, and the signal/noise ratio is improved. 3. Considering the characteristic of probability distribution of seismic data and geological events fully, an object function is constructed using the theory of Bayes estimation as the criterion. The mathematics is used here to describe the content of practice theory. 4. Considering the influence of structure, the seismic profile is interpreted to build the model of structure. A series of structure model is built. So as the impedance model. The high frequency of inversion is controlled by the geological rule. 5. Conjugate gradient method is selected to improve resolving process for it fit the demands of geophysics, and the efficiency of algorithm is enhanced. As the geological information is used fully, the result of impedance inversion is reasonable and complex reservoir could be forecasted further perfectly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The biothermocatalytic transitional zone gas is a new type of natural gas genetic theory, and also an clean, effective and high quality energy with shallow burial depth, wide distribution and few investment. Meanwhile, this puts biothermocatalytic transitional zone gas in important position to the energy resource and it is a challenging front study project. This paper introduces the concept, the present situation of study and developmental trend about biothermocatalytic transitional zone gas in detail. Then by using heat simulating of source rocks and catalysis mechanism analysis in the laboratory and studying structural evolution, sedimentation, diagenesis and the conditions of accumulation formation and so on, this paper also discusses catalytic mechanism and evolutionary model of the biothermocatalytic transitional zone gas formation, and establishes the methods of appraisal parameter and resources prediction about the biothermocatalytic transitional zone gas. At last, it shows that geochemical characteristics and differentiated mark of the biothermocatalytic transitional zone gas, and perfect natural gas genetic theory, and points out the conditions of accumulation formation, distribution characteristics and potential distribution region on the biothermocatalytic transitional zone gas m China. The paper mainly focuses on the formation mechanism and the resources potential about the biothermocatalytic transitional zone gas. Based on filed work, it is attached importance to a combination of macroscopic and microcosmic analysis, and the firsthand data are obtained to build up framework and model of the study by applying geologic theory. Based on sedimentary structure, it is expounded that structural actions have an effect on filling space and developmental cource of sediments and evolution of source rocks. Carried out sedimentary environment, sequence stratigraphy, sedimentary system and diagenesis and so on, it is concluded that diagenesis influences developmental evolution of source rocks, and basic geologic conditions of the biothermocatalytic transitional zone gas. Applying experiment simulating and catalytic simulating as well as chemical analysis, catalytic mechanism of clay minerals is discussed. Combined diagenecic dynamics with isotope fractionation dynamics, it is established that basis and method of resource appraisal about the biothermocatalytic transitional zone gas. All these results effectively assess and predict oil&gas resources about the biothermocatalytic transitional zone gas-bearing typical basin in China. I read more than 170 volumes on the biothermocatalytic transitional zone gas and complete the dissertation' summary with some 2.4 ten thousand words, draw up study contents in some detail and set up feasible experimental method and technologic course. 160 pieces of samples are obtained in oilfield such as Liaohe, Shengli, Dagang and Subei and so on, some 86 natural gas samples and more than 30 crude oil samples. Core profiles about 12 wells were observed and some 300 geologic photos were taken. Six papers were published in the center academic journal at home and abroad. Collected samples were analysised more than 1000 times, at last I complete this dissertation with more than 8 ten thousand words, and with 40 figures and 4 plates. According to these studies, it is concluded the following results and understandings. 1. The study indicates structural evolution and action of sedimentary basin influence and control the formation and accumulation the biothermocatalytic transitional zone gas. Then, the structural action can not only control accommodation space of sediments and the origin, migration and accumulation of hydrocarbon matters, but also can supply the origin of energy for hygrocarbon matters foramtion. 2. Sedimentary environments of the biothermocatalytic transitional zone gas are lake, river and swamp delta- alluvial fan sedimentary systems, having a warm, hot and humid climate. Fluctuation of lake level is from low to high., frequency, and piling rate of sedimentary center is high, which reflect a stable depression and rapidly filling sedimentary course, then resulting in source rocks with organic matter. 3. The paper perfects the natural gas genetic theory which is compound and continuous. It expounds the biothermocatalytic transitional zone gas is a special gas formation stage in continuous evolutionary sequence of organic matter, whose exogenic force is temperture and catalysis of clay minerals, at the same time, having decarbxylation, deamination and so on. 4. The methodology is established which is a combination of SEM, TEM and Engery spectrum analysis to identify microstructure of crystal morphology about clay minerals. Using differential thermal-chromatographic analysis, it can understand that hydrocarbon formation potential of different typies kerogens and catalytic method of all kinds of mineral matrix, and improve the surface acidity technology of clay minerals measured by the pyridine analytic method. 5. The experiments confirm catalysis of clay minerals to organic matter hygrocarbon formation. At low temperature (<300 ℃), there is mainly catalysis of montmorillonite, which can improve 2-3 times about produced gas of organic matters and the pyrolyzed temperature decreased 50 ℃; while at the high temperature, there is mainly catalysis of illite which can improve more than 2 times about produced gas of organic matters. 6. It is established the function relationship between organic matter (reactant) concentration and temperature, pressure, time, water and so on, that is C=f (D, t). Using Rali isotope fractionation effect to get methane isotope fractionation formula. According to the relationship between isotope fractionation of diagenesis and depth, and combined with sedimentary rate of the region, it is estimated that relict gas of the biothermocatalytic transitional zone gas in the representative basin. 7. It is revealed that hydrocarbon formation mechanism of the biothermocatalytic transitional zone gas is mainly from montmorillonite to mixed minerals during diagenesis. In interlayer, a lot of Al~(3+) substitute for Si~(4+), resulting in a imbalance between surface charge and interlayer charge of clay minerals and the occurrence of the Lewis and Bronsted acid sites, which promote to form the carbon cation. The cation can form alkene or small carbon cation. 8. It is addressed the comprehensive identification mark of the biothermo - catalytic transitional zone gas. In the temproal-spatial' distribution, its source rocks is mainly Palaeogene, secondly Cretaceous and Jurassic of Mesozoic, Triassic, having mudy rocks and coal-rich, their organic carbon being 0.2% and 0.4% respectively. The vitrinite reflection factor in source rocks Ro is 0.3-0.65%, a few up to 0.2%. The burial depth is 1000-3000m, being characterized by emerge of itself, reservoir of itself, shallow burial depth. In the transitional zone, from shallow to deep, contents of montmorillonites are progressively reduced while contents of illites increasing. Under SEM, it is observed that montmorillonites change into illite.s, firstly being mixed illite/ montmorillonite with burr-like, then itlite with silk-like. Carbon isotope of methane in the biothermocatatytic transitional zone gas , namely δ~(13)C_1-45‰- -60 ‰. 9. From the evolutionary sequence of time, distribution of the biothermocatalytic transitional zone gas is mainly oil&gas bearing basin in the Mesozoic-Neozoic Era. From the distribution region, it is mainly eastern stuctural active region and three large depressions in Bohaiwang basin. But most of them are located in evolutionary stage of the transitional zone, having the better relationship between produced, reservoir and seal layers, which is favorable about forming the biothermocatalytic transitional zone gas reservoir, and finding large gas (oil) field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seismic exploration is the main tools of exploration for petroleum. as the society needs more petroleum and the level of exploration is going up, the exploration in the area of complex geology construction is the main task in oil industry, so the seismic prestack depth migration appeared, it has good ability for complex construction imaging. Its result depends on the velocity model strongly. So for seismic prestack depth migration has become the main research area. In this thesis the difference in seismic prestack depth migration between our country and the abroad has been analyzed in system. the tomographical method with no layer velocity model, the residual curve velocity analysical method based on velocity model and the deleting method in pre-processing have been developed. In the thesis, the tomographysical method in velocity analysis is been analyzed at first. It characterized with perfection in theory and diffculity in application. This method use the picked first arrivial, compare the difference between the picked first arrival and the calculated arrival in theory velocity model, and then anti-projected the difference along the ray path to get the new velocity model. This method only has the hypothesis of high frequency, no other hypothesis. So it is very effective and has high efficiency. But this method has default still. The picking of first arrival is difficult in the prestack data. The reasons are the ratio of signal to noise is very low and many other event cross each other in prestack data. These phenomenon appear strongly in the complex geology construction area. Based on these a new tomophysical methos in velocity analysis with no layer velocity model is been developed. The aim is to solve the picking problem. It do not need picking the event time contiunely. You can picking in random depending on the reliability. This methos not only need the pick time as the routine tomographysical mehtod, but also the slope of event. In this methos we use the high slope analysis method to improve the precision of picking. In addition we also make research on the residual curve velocity analysis and find that its application is not good and the efficiency is low. The reasons is that the hypothesis is rigid and it is a local optimizing method, it can solve seismic velocity problem in the area with laterical strong velocity variation. A new method is developed to improve the precision of velocity model building . So far the pattern of seismic prestack depth migration is the same as it aborad. Before the work of velocity building the original seismic data must been corrected on a datum plane, and then to make the prestack depth migration work. As we know the successful example is in Mexico bay. It characterized with the simple surface layer construction, the pre-precessing is very simple and its precision is very high. But in our country the main seismic work is in land, the surface layer is very complex, in some area the error of pre-precessing is big, it affect the velocity building. So based on this a new method is developed to delete the per-precessing error and improve the precision of velocity model building. Our main work is, (1) developing a effective tomographical velocity building method with no layer velocity model. (2) a new high resolution slope analysis method is developed. (3) developing a global optimized residual curve velocity buliding method based on velocity model. (4) a effective method of deleting the pre-precessing error is developing. All the method as listed above has been ceritified by the theorical calculation and the actual seismic data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mudstone reservoir is a subtle reservoir with extremely inhomogeneous, whose formation is greatly related to the existence of fracture. For this kind of reservoir, mudstone is oil source rock, cover rock and reservoir strata, reservoir type is various, attitude of oil layer changes greatly, and the distribution of oil and gas is different from igneous or clastic rock reservoir as well as from carbonate reservoir of self-producing and self-containing of oil and gas. No mature experience has been obtained in the description, exploration and development of the reservoir by far. Taking Zhanhua depression as an example, we studied in this thesis the tectonic evolution, deposit characteristics, diagenesis, hydrocarbon formation, abnormal formation pressure, forming of fissure in mudstone reservoir, etc. on the basis of core analysis, physical simulation, numerical simulation, integrated study of well logging and geophysical data, and systematically analyzed the developing and distributing of mudstone fissure reservoir and set up a geological model for the formation of mudstone fissure reservoir, and predicted possible fractural zone in studied area. Mudstone reservoir mainly distributed on the thrown side of sedimentary fault along the sloping area of the petroleum generatiion depression in Zhanhua depression. Growing fault controlled subsidence and sedimentation. Both the rate of subsidence and thickness of mudstone are great on the thrown side of growing fault, which result in the formation of surpressure in the area. The unlocking of fault which leads to the pressure discharges and the upward conduct of below stratum, also makes for the surpressure in mudstone. In Zhanhua depression, mudstone reservior mainly developed in sub-compacted stratum in the third segment of Shahejie formation, which is the best oil source rock because of its wide spread in distribution, great in thickness, and rich in organic matter, and rock types of which are oil source mudstone and shale of deep water or semi-deep water sediment in lacustrine facies. It revealed from core analysis that the stratum is rich in limestone, and consists of lamina of dark mudstone and that of light grey limestone alternately, such rock assemblage is in favor of high pressure and fracture in the process of hydrocarbon generation. Fracture of mudstone in the third segment of Shahejie formation was divided into structure fracture, hydrocarbon generation fracture and compound fracture and six secondary types of fracture for the fist time according to the cause of their formation in the thesis. Structural fracture is formed by tectonic movement such as fold or fault, which develops mainly near the faults, especially in the protrude area and the edge of faults, such fracture has obvious directivity, and tend to have more width and extension in length and obvious direction, and was developed periodically, discontinuously in time and successively as the result of multi-tectonic movement in studied area. Hydrocarbon generation fracture was formed in the process of hydrocarbon generation, the fracture is numerous in number and extensively in distribution, but the scale of it is always small and belongs to microfracture. The compound fracture is the result of both tectonic movement and hydrocarbon forming process. The combination of above fractures in time and space forms the three dimension reservoir space network of mudstone, which satellites with abnormal pressure zone in plane distribution and relates to sedimentary faces, rock combination, organic content, structural evolution, and high pressure, etc.. In Zhanhua depression, the mudstone of third segment in shahejie formation corresponds with a set of seismic reflection with better continuous. When mudstone containing oil and gas of abnormal high pressure, the seismic waveform would change as a result of absorb of oil and gas to the high-frequency composition of seismic reflection, and decrease of seismic reflection frequency resulted from the breakage of mudstone structure. The author solved the problem of mudstone reservoir predicting to some degree through the use of coherent data analysis in Zhanhua depression. Numerical modeling of basin has been used to simulate the ancient liquid pressure field in Zhanhua depression, to quantitative analysis the main controlling factor (such as uncompaction, tectonic movement, hydrocarbon generation) to surpressure in mudstone. Combined with factual geologic information and references, we analyzed the characteristic of basin evolution and factors influence the pressure field, and employed numerical modeling of liquid pressure evolution in 1-D and 2-D section, modeled and analyzed the forming and evolution of pressure in plane for main position in different periods, and made a conclusion that the main factors for surpressure in studied area are tectonic movement, uncompaction and hydrocarbon generation process. In Zhanhua depression, the valid fracture zone in mudstone was mainly formed in the last stage of Dongying movement, the mudstone in the third segment of Shahejie formation turn into fastigium for oil generation and migration in Guantao stage, and oil and gas were preserved since the end of the stage. Tectonic movement was weak after oil and gas to be preserved, and such made for the preserve of oil and gas. The forming of fractured mudstone reservoir can be divided into four different stages, i.e. deposition of muddy oil source rock, draining off water by compacting to producing hydrocarbon, forming of valid fracture and collecting of oil, forming of fracture reservoir. Combined with other regional geologic information, we predicted four prior mudstone fracture reservoirs, which measured 18km2 in area and 1200 X 104t in geological reserves.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the increasingly enlarged exploration target, deep target layer(especially for the reservoir of lava) is a potential exploration area. As well known, the reflective energy becomes weak because the seismic signals of reflection in deep layer are absorbed and attenuate by upper layer. Caustics and multi-values traveltime in wavefield are aroused by the complexity of stratum. The ratio of signal to noise is not high and the fold numbers are finite(no more than 30). All the factors above affect the validity of conventional processing methods. So the high S/N section of stack can't always be got with the conventional stack methods even if the prestack depth migration is used. So it is inevitable to develop another kind of stack method instead. In the last a few years, the differential solution of wave equation was hold up by the condition of computation. Kirchhoff integral method rose in the initial stages of the ninetieth decade of last century. But there exist severe problems in it, which is are too difficult to resolve, so new method of stack is required for the oil and gas exploration. It is natural to think about upgrading the traditionally physic base of seismic exploration methods and improving those widely used techniques of stack. On the other hand, great progress is depended on the improvement in the wave differential equation prestack depth migration. The algorithm of wavefield continuation in it is utilized. In combination with the wavefield extrapolation and the Fresnel zone stack, new stack method is carried out It is well known that the seismic wavefield observed on surface comes from Fresnel zone physically, and doesn't comes from the same reflection points only. As to the more complex reflection in deep layer, it is difficult to describe the relationship between the reflective interface and the travel time. Extrapolation is used to eliminate caustic and simplify the expression of travel time. So the image quality is enhanced by Fresnel zone stack in target. Based on wave equation, high-frequency ray solution and its character are given to clarify theoretical foundation of the method. The hyperbolic and parabolic travel time of the reflection in layer media are presented in expression of matrix with paraxial ray theory. Because the reflective wave field mainly comes from the Fresnel Zone, thereby the conception of Fresnel Zone is explained. The matrix expression of Fresnel zone and projected Fresnel zone are given in sequence. With geometrical optics, the relationship between object point in model and image point in image space is built for the complex subsurface. The travel time formula of reflective point in the nonuniform media is deduced. Also the formula of reflective segment of zero-offset and nonzero offset section is provided. For convenient application, the interface model of subsurface and curve surface derived from conventional stacks DMO stack and prestack depth migration are analyzed, and the problem of these methods was pointed out in aspects of using data. Arc was put forward to describe the subsurface, thereby the amount of data to stack enlarged in Fresnel Zone. Based on the formula of hyperbolic travel time, the steps of implementation and the flow of Fresnel Zone stack were provided. The computation of three model data shows that the method of Fresnel Zone stack can enhance the signal energy and the ratio of signal to noise effectively. Practical data in Xui Jia Wei Zhi, a area in Daqing oilfield, was processed with this method. The processing results showed that the ability in increasing S/N ratio and enhancing the continuity of weak events as well as confirming the deep configuration of volcanic reservoir is better than others. In deeper target layer, there exists caustic caused by the complex media overburden and the great variation of velocity. Travel time of reflection can't be exactly described by the formula of travel time. Extrapolation is bring forward to resolve the questions above. With the combination of the phase operator and differential operator, extrapolating operator adaptable to the variation of lateral velocity is provided. With this method, seismic records were extrapolated from surface to any different deptlis below. Wave aberration and caustic caused by the inhomogenous layer overburden were eliminated and multi-value curve was transformed into the curve.of single value. The computation of Marmousi shows that it is feasible. Wave field continuation extends the Fresnel Zone stack's application.