960 resultados para HPLC-DAD-MS
Resumo:
Despite ethical and technical concerns, the in vivo method, or more commonly referred to mouse bioassay (MBA), is employed globally as a reference method for phycotoxin analysis in shellfish. This is particularly the case for paralytic shellfish poisoning (PSP) and emerging toxin monitoring. A high-performance liquid chromatography method (HPLC-FLD) has been developed for PSP toxin analysis, but due to difficulties and limitations in the method, this procedure has not been fully implemented as a replacement. Detection of the diarrhetic shellfish poisoning (DSP) toxins has moved towards LC-mass spectrometry (MS) analysis, whereas the analysis of the amnesic shellfish poisoning (ASP) toxin domoic acid is performed by HPLC. Although alternative methods of detection to the MBA have been described, each procedure is specific for a particular toxin and its analogues, with each group of toxins requiring separate analysis utilising different extraction procedures and analytical equipment. In addition, consideration towards the detection of unregulated and emerging toxins on the replacement of the MBA must be given. The ideal scenario for the monitoring of phycotoxins in shellfish and seafood would be to evolve to multiple toxin detection on a single bioanalytical sensing platform, i.e. 'an artificial mouse'. Immunologically based techniques and in particular surface plasmon resonance technology have been shown as a highly promising bioanalytical tool offering rapid, real-time detection requiring minimal quantities of toxin standards. A Biacore Q and a prototype multiplex SPR biosensor have been evaluated for their ability to be fit for purpose for the simultaneous detection of key regulated phycotoxin groups and the emerging toxin palytoxin. Deemed more applicable due to the separate flow channels, the prototype performance for domoic acid, okadaic acid, saxitoxin, and palytoxin calibration curves in shellfish achieved detection limits (IC20) of 4,000, 36, 144 and 46 μg/kg of mussel, respectively. A one-step extraction procedure demonstrated recoveries greater than 80 % for all toxins. For validation of the method at the 95 % confidence limit, the decision limits (CCα) determined from an extracted matrix curve were calculated to be 450, 36 and 24 μg/kg, and the detection capability (CCβ) as a screening method is ≤10 mg/kg, ≤160 μg/kg and ≤400 μg/kg for domoic acid, okadaic acid and saxitoxin, respectively.
Resumo:
A novel multiplex microarray has been developed for the detection of five groups of harmful algal and cyanobacterial toxins found in marine, brackish, and freshwater environments including domoic acid (DA), okadaic acid (OA, and analogues), saxitoxin (STX, and analogues), cylindrospermopsin (CYN) and microcystins (MC, and analogues). The sensitivity and specificity were determined and feasibility to be used as a screening tool investigated. Results for algal/cyanobacterial cultures (n = 12) and seawater samples (n = 33) were compared to conventional analytical methods, such as high performance liquid chromatography (HPLC) and liquid chromatography tandem mass spectrometry (LC-MS/MS). Detection limits for the 15 min assay were 0.37, 0.44, 0.05, 0.08, and 0.40 ng/mL for DA, OA, STX, CYN, and MC, respectively. The correlation of data obtained from the microarray compared to conventional analysis for the 12 cultures was r(2) = 0.83. Analysis of seawater samples showed that 82, 82, 70, 82, and 12% of samples were positive (>IC20) compared to 67, 55, 36, 0, and 0% for DA, OA, STX, CYN, and MC, respectively, for conventional analytical methods. The discrepancies in results can be attributed to the enhanced sensitivity and cross-reactivity profiles of the antibodies in the MBio microarray. The feasibility of the microarray as a rapid, easy to use, and highly sensitive screening tool has been illustrated for the five-plex detection of biotoxins. The research demonstrates an early warning screening assay to support national monitoring agencies by providing a faster and more accurate means of identifying and quantifying harmful toxins in water samples.
Resumo:
The performances of four LC-MS/MS methodologies for determination of up to eight mycotoxin biomarkers in human urines were compared by involving three laboratories that analysed common urine samples spiked at two levels of each biomarker. Each laboratory received a calibration solution, spiked urines and the corresponding unspiked urine. The two spiking levels for each biomarker were chosen by considering the levels naturally occurring in human urines and the limits of quantification of the LC-MS/MS methodologies used by the participating laboratories. The results of each laboratory were evaluated for their z-score values. The percentage of satisfactory z-scores (vertical bar z vertical bar 2) were obtained for fumonisin B-1 (7/12 results), ochratoxin A (4/8 results) and alpha-zearalenol (1/8 results). The percentage of satisfactory z-scores for fumonisin B-1 and ochratoxin A increased from 42 to 83% for fumonisin B-1 and from 50 to 62% for ochratoxin A when laboratories 1 and 2 used own calibrants. Factors that could explain the different results obtained for fumonisin B-1 and ochratoxin A with provided and own calibration solutions could not be identified in this study and should be carefully investigated in future studies.
Resumo:
A procedure was developed to extract polyols and trehalose (protectants against stress) from fungal conidia. Conidia were sonicated (120 s) and immersed in a boiling water bath (5.5 min) to optimize extraction of polyols and trehalose, respectively. A rapid method was developed to separate and detect low-molecular-weight polyols and trehalose using high-performance liquid chromatography (HPLC). An ion exchange column designed for standard carbohydrate analysis was used in preference to one designed for sugar alcohol separation. This resulted in rapid elution (less than 5 min), without sacrificing peak resolution. The use of a pulsed electrochemical detector (gold electrode) resulted in limits of reliable quantification as low as 1.6 μg ml-1 for polyols and 2.8 μg ml-1 for trehalose. This is very sensitive and rapid method by which these protectants can be analysed. It avoids polyol derivatization that characterizes analysis by gas chromatography and the long run times (up to 45 min) that typify HPLC analysis using sugar alcohol columns.
Resumo:
Amphibian skin has proved repeatedly to be a largely untapped source of bioactive peptides and this is especially true of members of the Phyllomedusinae subfamily of frogs native to South and Central America. Tryptophyllins are a group of peptides mainly found in the skin of members of this genus. In this study, a novel tryptophyllin (TPH) type 3 peptide, named AcT-3, has been isolated and structurally-characterised from the skin secretion and lyophilised skin extract of the red-eye leaf frog, Agalychnis callidryas. The peptide was identified in and purified from the skin secretion by reverse-phase HPLC. MALDI-TOF mass spectrometry and MS/MS fragmentation sequencing established its primary structure as: pGlu-Gly-Lys-Pro-Tyr-Trp-Pro-Pro-Pro-Phe-Leu-Pro-Glu, with a non-protonated molecular mass of 1538.19Da. The mature peptide possessed the canonical N-terminal pGlu residue that arises from post-translational modification of a Gln residue. The deduced open-reading frame consisted of 63 amino acid residues encoding a highly-conserved signal peptide of approximately 22 amino acid residues, an intervening acidic spacer peptide domain, a single AcT-3 encoding domain and a C terminal processing site. A synthetic replicate of AcT-3 was found to antagonise the effect of BK on rat tail artery smooth muscle and to contract the intestinal smooth muscle preparations. It was also found that AcT-3 could dose-dependently inhibit the proliferation of human prostate cancer cell lines after 72h incubation.
Resumo:
Cold-pressed rapeseed oil (CPRSO) is produced when seeds from an oilseed rape crop are mechanically crushed whilst at a low temperature. CPRSO’s popularity is rapidly expanding and is now produced in most Northern European countries including both N.Ireland and ROI. The CPRSO industry is still relatively new and therefore not as widely researched as other high quality oils. Fifteen CPRSO from The UK, Ireland and France were examined to determine characteristic differences between the oils. Two samples of extra-virgin olive oil and two samples of refined rapeseed oil were also included in the investigation to assess performance against market competitors. The antioxidant potential of the oils was assessed using the ABTS and DPPH radical scavenging assays. Both unexpectedly showed that refined rapeseed oil had the highest potential whilst there was significant difference between many of the CPRSO’s. The acid value (ACOS method Cd 3d-63) ranged widely from 0.47-3.41. To predict the stability during storage, an accelerated oxidation test was carried out where the oils were placed in an oven (60°C) and peroxide value was monitored. The results showed extra-virgin olive oil underwent the least oxidation during the trial. The refined rapeseed oil suffered the worst levels of oxidation whilst the CPRSO’s performed similarly but with some variation. Fatty acid composition was investigated with GC-MS and some of the major fatty acids were found to differ significantly between producers. Minor compound analysis was achieved with extraction and identification through HPLC. All results are critically discussed and compared to relevant published studies.
Resumo:
In this study, we report a novel heptadecapeptide (LIGGCWTKSIPPKPCLV) of the pLR/ranacyclin family, named pLR-HL, whose structure was deduced from its biosynthetic precursor-encoding cDNA cloned from the skin secretion-derived cDNA library of the broad-folded frog, Hylarana latouchii, by employing a "shotgun" cloning technique. It contains a disulphide loop between Cys5 and Cys15 which is consistent with Bowman-Birk-type protease inhibitors. The primary structure of pLR-HL deduced from the cDNA sequence was confirmed by fractionating the skin secretion using reverse phase HPLC and subsequent analysis using MALDI-TOF mass spectrometry and LC/MS/MS fragmentation sequencing. On the basis of the establishment of unequivocal amino acid sequence, a synthetic replicate was synthesised by solid-phase Fmoc chemistry, and it displayed a moderately potent trypsin inhibition with a Ki of 143 nM. The substitution of Lys-8 by Phe (Phe8 -pLR-HL) resulted in abolition of trypsin inhibition but generation of modest inhibition on chymotrypsin with a Ki of 2.141 μM. Additionally, both the disulphide loops of pLR-HL and Phe8 -pLR-HL were synthesised and tested. Both of the catalytic loops retained similar inhibitory potencies towards trypsin or chymotrypsin in comparison with the original intact molecules. Thus, the replacement of reactive site residues could alter the specificity of these protease inhibitors, while the canonical reactive loop alone can independently constitute biologically-active moiety.
Resumo:
Complexes of arsenic compounds and glutathione are believed to play an essential part in the metabolism and transport of inorganic arsenic and its methylated species. Up to now, the evidence of their presence is mostly indirect. We studied the stability and Chromatographic behaviour of glutathione complexes with trivalent arsenic: i.e. AsIII(GS)3, MA III(GS)2 and DMAIII(GS) under different conditions. Standard ion chromatography using PRP X-100 and carbonate or formic acid buffer disintegrated the complexes, while all three complexes are stable and separable by reversed phase chromatography (0.1% formic acid/acetonitrile gradient). AsIII(GS)3 and MAIII(GS)2 were more stable than DMAIII(GS), which even under optimal conditions tended to degrade on the column at 25 °C. Chromatography at 6 °C can retain the integrity of the samples. These results shed more light on the interpretation of a vast number of previously published arsenic speciation studies, which have used Chromatographic separation techniques with the assumption that the integrity of the arsenic species is guaranteed. © The Royal Society of Chemistry 2004.
Resumo:
There are more than 300 potential mycotoxins that can contaminate food and feed and cause adverse effects in humans and animals. The data on the co-occurrence of mycotoxins in novel animal feed materials, such as distiller's dried grain with solubles (DDGS), are limited. Thus, a UHPLC-MS/MS method for the quantitation of 77 mycotoxins and other fungal metabolites was used to analyze 169 DDGS samples produced from wheat, maize, and barley and 61 grain samples. All DDGS samples analyzed were contaminated with 13-34 different mycotoxins. Fumonisins were present in all 52 maize DDGS samples (81.0-6890 μg/kg for fumonisin B1), and deoxynivalenol was present in all 99 wheat DDGS samples (39.3-1120 μg/kg). A number of co-occurring mycotoxins were also identified. Due to the high co-occurrence of mycotoxins, routine screening of the animal feed ingredients is highly recommended to allow the highlighted risks to be effectively managed.
Resumo:
The increasing occurrence of puffer fish containing tetrodotoxin (TTX) in the Mediterranean could represent a major food safety risk for European consumers and threaten the fishing industry. The work presented herein describes the development of a new enzyme linked immunosorbent assay (mELISA) based on the immobilization of TTX through dithiol monolayers self-assembled on maleimide plates, which provides an ordered and oriented antigen immobilization and favors the antigen-antibody affinity interaction. The mELISA was found to have a limit of detection (LOD) of TTX of 0.23 mg/kg of puffer fish matrix. The mELISA and a surface plasmon resonance (SPR) immunosensor previously developed were employed to establish the cross-reactivity factors (CRFs) of 5,6,11-trideoxy-TTX, 5,11-deoxy-TTX, 11-nor-TTX-6-ol, and 5,6,11-trideoxy-4-anhydro-TTX, as well as to determine TTX equivalent contents in puffer fish samples. Results obtained by both immunochemical tools were correlated (R(2) = 0.977). The puffer fish samples were also analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the corresponding CRFs were applied to the individual TTX contents. Results provided by the immunochemical tools, when compared with those obtained by LC-MS/MS, showed a good degree of correlation (R(2) = 0.991 and 0.979 for mELISA and SPR, respectively). The mouse bioassay (MBA) slightly overestimated the CRF adjusted TTX content of samples when compared with the data obtained from the other techniques. The mELISA has been demonstrated to be fit for the purpose for screening samples in monitoring programs and in research activities.