910 resultados para HPA axis
Resumo:
Epitaxial LaNiO3 metallic oxide thin films have been grown on c-axis oriented YBa2Cu3O7-delta thin films on LaAlO3 substrates by pulsed laser deposition technique and the interface formed between the two films has been examined by measuring the contact conductance of the same. The specific contact conductance of the interface measured using a modified four probe method was found to be 1.4 to 6 x 10(4) ohm(-1) cm(-2) at 77 K, There are indications that contact conductance can be brought closer to that obtained for noble metal-YBCO interface.
Resumo:
NMR spectra of liquid crystalline phases and the molecules dissolved therein, spinning at and near the magic angle provide information on the director dynamics and the order parameter. The studies on the dynamics of the liquid crystal director for sample spinning near magic angle in mesophases with positive and negative diamagnetic susceptibility anisotropies (Delta chi) and their mixtures with near-zero macroscopic diamagnetic susceptibility anisotropies have been reported. In systems with weakly positive Delta chi, the director has been observed to switch from an orientation parallel to the spinning axis at low rotational speeds to one perpendicular to the spinning axis at high rotational speeds, when the angle theta, the axis of rotation makes with the magnetic field is smaller than the magic angle theta(m). For systems with a small negative Delta chi, similar director behaviour has been observed for theta greater than theta(m). At magic angle, the spectra under slow spinning speeds exhibit a centre band and side bands at integral values of the spinning speeds. The intensities of the spinning side bands have been shown to contain information on the sign and the magnitude of the order parameter(s). The results are discussed with illustrative examples. Results on the orientation of the chemical shielding tensor obtained from a combination of the NMR studies in the solid and the liquid crystalline states, have been described.
Resumo:
The frequency response of the dielectric constant (epsilon(r)), the loss tangent (tan delta) and impedance Z of potassium acid phthalate (KAP) single crystals, monitored along the polar axis, exhibit strong resonances in the frequency range 50-200 kHz, depending on the dimensions of the sample. The observed resonance effect, which is strongly dependent on the geometric shape and size of the sample, is attributed to its piezoelectric nature. The resonance peak positions have been monitored as a function of both temperature and uniaxial pressure. The stiffness coefficient (C), computed based on the resonance data, is found to decrease with increasing temperature and increase with increasing pressure. The electro-mechanical coupling coefficient (k), obtained by resonance-anti-resonance method, has also been found to increase with rise in temperature. The epsilon(r) behaviour along the polar axis, as a function of temperature is consistent with that of k. The preliminary results on the influence, of partial replacement of K+ ions in the KAP crystal by Cs+ and Li+ ions, on the observed piezoelectric resonance effects are also included.
Resumo:
Thick films of YBa2Cu3O7-delta fabricated on polycrystalline Ba2RETaO6 (where RE= Pr, Nd, Eu, and Dy) substrates by dip-coating and partial melting techniques are textured and c-axis oriented, showing predominantly (00l) orientation. All the thick films show a superconducting zero resistance transition of 90 K. SEM studies clearly indicate platelike and needlelike grain growth over a wide area of the thick films. The values of the critical current density for these thick films are similar to 10(4) A/cm(2) at 77 K as determined by the nonresonant R.F. absorption method. Various processing conditions that affect the critical current density of thick films are also discussed.
Resumo:
A range of novel chiral tellurium compounds having an azomethine functional group in the position ortho to tellurium has been synthesized by the reaction of the tellurium-containing aldehydes bis(o-formylphenyl) telluride (1) and o-(butyltelluro)benzaldehyde (4) with chiral amines (R)-(+)-(1-pheylethylamine) and (1R,2S)-(-)-norephedrine, respectively. The precursor aldehydes were prepared by using a reported procedure with slight but advantageous modifications. During the preparation of o-(butyltelluro)benzaldehyde, interesting side products, namely bis(o-formylphenyl) ditelluride ethylene acetal 5, bis(o-formylphenyl) tritelluride (6), and bis(o-formylphenyl) ditelluride (7) were isolated in moderate yields. The ditelluride 7 has been characterized by single-crystal X-ray diffraction studies. The liquid Schiff bases 10 and 11 were further characterized by derivatizing with liquid bromine. The title compound was obtained in excellent yield by reacting the Schiff base 11 with elemental bromine. Detailed NMR studies indicated the presence of a rigid environment for the hydroxyl group. Single-crystal X-ray determinations of the crystals obtained from the different batches indicated. the presence of the two pseudopolymorphic forms 13a and 13b, respectively. In the case of 13a there is one molecule of CH3CN as solvent of crystallization, whereas in 13b half a molecule of CH3CN per molecule of the title compound lies along the 2-fold axis. In 13a the hydroxyl hydrogen is hydrogen-bonded to the nitrogen of the solvent molecule, whereas in 13b it is hydrogen-bonded to the bromine of the neighboring molecule.
Resumo:
We give an elementary treatment of the defining representation and Lie algebra of the three-dimensional unitary unimodular group SU(3). The geometrical properties of the Lie algebra, which is an eight dimensional real Linear vector space, are developed in an SU(3) covariant manner. The f and d symbols of SU(3) lead to two ways of 'multiplying' two vectors to produce a third, and several useful geometric and algebraic identities are derived. The axis-angle parametrization of SU(3) is developed as a generalization of that for SU(2), and the specifically new features are brought out. Application to the dynamics of three-level systems is outlined.
Resumo:
We describe the synthesis and structural characterization of new layered bismuth titanates, A[Bi3Ti4O13] and A[Bi3PbTi5O16]for A = K, Cs, corresponding to n = 4 and 5 members of the Dion-Jacobson series of layered perovskites of the general formula, A[A'n-1BnO3n+1]. These materials have been prepared by solid state reaction of the constituents containing excess alkali, which is required to suppress the formation of competitive Aurivillius phases. Unlike the isostructural niobates and niobium titanates of the same series, the new phases reported here are spontaneously hydrated-a feature which could make them potentially useful as photocatalysts for water splitting reaction. On hydration of the potassium compounds, the c axis expands by ca. 2 Angstrom and loses its doubling [for example, the tetragonal lattice parameters of K[Bi3Ti4O13] and its dihydrate are respectively a = 3900(1)Angstrom c 37.57(2) Angstrom; a 3.885(1) Angstrom, c = 20.82(4) Angstrom]; surprisingly, the cesium analogues do not show a similar change on hydration.
Resumo:
The two-phase thermodynamic (2PT) model is used to determine the absolute entropy and energy of carbon dioxide over a wide range of conditions from molecular dynamics trajectories. The 2PT method determines the thermodynamic properties by applying the proper statistical mechanical partition function to the normal modes of a fluid. The vibrational density of state (DoS), obtained from the Fourier transform of the velocity autocorrelation function, converges quickly, allowing the free energy, entropy, and other thermodynamic properties to be determined from short 20-ps MD trajectories. The anharmonic effects in the vibrations are accounted for by the broadening of the normal modes into bands from sampling the velocities over the trajectory. The low frequency diffusive modes, which lead to finite DoS at zero frequency, are accounted for by considering the DoS as a superposition of gas-phase and solid-phase components (two phases). The analytical decomposition of the DoS allows for an evaluation of properties contributed by different types of molecular motions. We show that this 2PT analysis leads to accurate predictions of entropy and energy of CO2 over a wide range of conditions (from the triple point to the critical point of both the vapor and the liquid phases along the saturation line). This allows the equation of state of CO2 to be determined, which is limited only by the accuracy of the force field. We also validated that the 2PT entropy agrees with that determined from thermodynamic integration, but 2PT requires only a fraction of the time. A complication for CO2 is that its equilibrium configuration is linear, which would have only two rotational modes, but during the dynamics it is never exactly linear, so that there is a third mode from rotational about the axis. In this work, we show how to treat such linear molecules in the 2PT framework.
Resumo:
The structure of N-3-benzoyl-2',3'-di-O-benzoyluridine, C30H24N2O9, has two molecules in the asymmetric unit. The uracil bases of both the molecules are in the anti conformation with respect to the ribose moiety and the furanosyl rings adopt a C3'-endo conformation. The orientation about the C4'-C5' bond is gauche-gauche. The two crystallographically independent molecules are linked through several C-H ... O hydrogen bonds. The nucleoside molecules pack as columns along the a axis and these columns repeat along the c axis.
Resumo:
The title compound, C18H19N5O6. H2O, has a syn conformation about the glycosidic bond. Its furanose ring shows a C2'-endo-C3'-exo twist conformation and trans-gauche geometry about the C4'-C5' bond. The angle between the adenine base and the phenyl ring of the anisoyl group is 22.9 degrees. Adenine and anisoyl groups stack along the b axis at a separation of 3.4 Angstrom.
Resumo:
The kinetics of the processes in facing targets sputtering of multicomponent oxide films is presented. The novel configuration of the process exhibits an enhanced ionization efficiency. Discharge diagnostics performed using optical emission spectroscopy revealed strong dependence of plasma parameters on process conditions. Numerical simulation based on thermalization and diffusion of sputtered atoms has been performed to estimate the transport efficiency in off-axis mode. Composition, structure and epitaxial quality of YBa2Cu3O7-x films prepared was found to be strongly dependent on atomic flux ratios (of Cu/Y and Ba/Y) arriving at the substrate, resputtering effect and phase stability of YBa2Cu3O7-x These studies have been shown to be useful in understanding the complex processes that occur in sputtering of multicomponent films. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Large amplitude stationary Rossby wave trains with wavelength in the range 50 degrees to 60 degrees longitude have been identified in the upper troposphere during May, through the analysis of 200 hPa wind anomalies. The spatial phase of these waves has been shown to differ by about 20 degrees of longitude between the dry and wet Indian monsoon years. It has been shown empirically that the Rossby waves are induced by the heat sources in the ITCZ. These heat sources appear in the Bay of Bengal and adjoining regions in May just prior to the onset of the Indian summer monsoon. The inter-annual spatial phase shift of the Rossby waves has been shown to be related to the shift in the deep convection in the zonal direction.
Resumo:
The crystal structure of the saccharide-free form of the basic form of winged-bean agglutinin (WBAI) has been solved by the molecular-replacement method and refined at 2.3 Angstrom resolution The final R factor is 19.74b for all data in the resolution range 8.0-2.3 Angstrom. The asymmetric unit contains two half-dimers, each located on a crystallographic twofold axis. The structure of the saccharide-free form is compared with that of the complex of WBAI wi th methyl-alpha-D-galactoside. The complex is composed of two dimers in the asymmetric unit. The intersubunit interactions in the dimer are nearly identical in the two structures The binding site of the saccharide-free structure contains three ordered water molecules at positions similar to those of the hydroxyl groups of the carbohydrate which an hydrogen bonded to the protein. Superposition of the saccharide-binding sites of the two structures shows that the major changes involve expulsion of these ordered water molecules and a shift of about 0.6 Angstrom of the main-chain atoms of the variable loop.
Resumo:
The optimisation is reported on the design of unbalanced magnetron (UBM) sputtering cathodes. For the study, a planar circular cathode backed by a double-coil electromagnet (compatible for a 100 mm diameter target) was developed. The variation of the structure and strength of the magnetic field in front of the target was investigated for different current combinations in the electromagnetic coils, and its effect on the sputtering process was analysed. The observations on the magnetic field geometry revealed some interesting features, such as the balancing point of the fields along the axis (null-point), and the zero axial region over the target surface (B-z = 0 ring). The positions of both could be controlled by adjusting the ratio of the electric current in the coils. The magnetic field null-point could be used as a reference for the region of homogeneous film growth. The B-z = 0 ring was the location where the glow discharge concentrated (or where the maximum target erosion occurred). The diameter of the ring determined the area covered by the discharge and thus the sputtering efficiency. The optimum substrate position can be fixed according to the position of the null-point and optimisation of sputtering can be achieved by adjusting the diameter of the B-z = 0 ring. The results of this study should be helpful in the designing of an ideal UBM using permanent magnets as well as electromagnets. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper presents an assessment of the flexural behavior of 15 fully/partially prestressed high strength concrete beams containing steel fibers investigated using three-dimensional nonlinear finite elemental analysis. The experimental results consisted of eight fully and seven partially prestressed beams, which were designed to be flexure dominant in the absence of fibers. The main parameters varied in the tests were: the levels of prestressing force (i.e, in partially prestressed beams 50% of the prestress was reduced with the introduction of two high strength deformed bars instead), fiber volume fractions (0%, 0.5%, 1.0% and 1.5%), fiber location (full depth and partial depth over full length and half the depth over the shear span only). A three-dimensional nonlinear finite element analysis was conducted using ANSYS 5.5 [Theory Reference Manual. In: Kohnke P, editor. Elements Reference Manual. 8th ed. September 1998] general purpose finite element software to study the flexural behavior of both fully and partially prestressed fiber reinforced concrete beams. Influence of fibers on the concrete failure surface and stress-strain response of high strength concrete and the nonlinear stress-strain curves of prestressing wire and deformed bar were considered in the present analysis. In the finite element model. tension stiffening and bond slip between concrete and reinforcement (fibers., prestressing wire, and conventional reinforcing steel bar) have also been considered explicitly. The fraction of the entire volume of the fiber present along the longitudinal axis of the prestressed beams alone has been modeled explicitly as it is expected that these fibers would contribute to the mobilization of forces required to sustain the applied loads across the crack interfaces through their bridging action. A comparison of results from both tests and analysis on all 15 specimens confirm that, inclusion of fibers over a partial depth in the tensile side of the prestressed flexural structural members was economical and led to considerable cost saving without sacrificing on the desired performance. However. beams having fibers over half the depth in only the shear span, did not show any increase in the ultimate load or deformational characteristics when compared to plain concrete beams. (C) 2002 Published by Elsevier Science Ltd.