909 resultados para HIV-1 REVERSE-TRANSCRIPTASE
Resumo:
The reduced progesterone metabolite tetrahydroprogesterone (3 alpha-hydroxy-5 alpha-pregnan-20-one; 3 alpha,5 alpha-THP) is a positive modulator of the gamma-aminobutyric acid type A (GABAA) receptor. Experiments performed in vitro with hypothalamic fragments have previously shown that GABA could modulate the release of gonadotropin-releasing hormone (GnRH). Using GT1-1 immortalized GnRH neurons, we investigated the role of GABAA receptor ligands, including 3 alpha,5 alpha-THP, on the release of GnRH. We first characterized the GABAA receptors expressed by these neurons. [3H]Muscimol, but not [3H]flunitrazepam, bound with high affinity to GT1-1 cell membranes (Kd = 10.9 +/- 0.3 nM; Bmax = 979 +/- 12 fmol/mg of protein), and [3H]muscimol binding was enhanced by 3 alpha,5 alpha-THP. mRNAs encoding the alpha 1 and beta 3 subunits of the GABAA receptor were detected by the reverse transcriptase polymerase chain reaction. In agreement with binding data, the benzodiazepine-binding gamma subunit mRNA was absent. GnRH release studies showed a dose-related stimulating action of muscimol. 3 alpha,5 alpha-THP not only modulated muscimol-induced secretion but also stimulated GnRH release when administered alone. Bicuculline and picrotoxin blocked the effects of 3 alpha,5 alpha-THP and muscimol. Finally, we observed that GT1-1 neurons convert progesterone to 3 alpha,5 alpha-THP. We propose that progesterone may increase the release of GnRH by a membrane mechanism, via its reduced metabolite 3 alpha,5 alpha-THP acting at the GABAA receptor.
Resumo:
Tese de mestrado, Doenças Infecciosas Emergentes, Universidade de Lisboa, Faculdade de Medicina, 2016
Resumo:
Pentobarbitone sodium (Sodium 5-ethyl-5[1-methylbutyl]-pentobarbitone) is a short-acting barbiturate that is commonly used to euthanase animals. As part of our studies into the molecular genetics of copper toxicosis in Bedlington terrier dogs, reverse-transcription (RT)-PCR was noted to always fail on RNA samples collected from livers of dogs sacrificed by pentobarbitone injection. When samples were collected without pentobarbitone, however, RTPCR was always successful. We suspected the possible inhibition by pentobarbitone sodium of either reverse transcriptase or Taq polymerase. In vitro studies showed that pentobarbitone interference of PCR occurred at >4 mug/mul. To identify if pentobarbitone produced competitive inhibition, each components (Taq polymerase, MgCl2, dNTP, etc.) of the PCR was individually altered. However, inhibition still persisted, suggesting that multiple PCR components may be affected. Also it was shown that pentobarbitone interference was not dependent on the PCR product size. Simple dilution of pentobarbitone contaminated DNA solutions, and the addition of bovine serum albumin (BSA) to the PCR mix overcame pentobarbitone interference. In vivo, PCR by pentobarbitone was found to be compounded by high DNA concentration and pentobarbitone contamination. In addition, both high DNA concentration and pentobarbitone contamination could be overcome through dilution and the addition of BSA. Further work is required to quantify pentobarbitone concentration in the liver-extracted DNA and RNA samples before this inhibition effect on PCR can be fully elucidated. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
More than fifteen years following the description of Tat as a critical HIV gene expression regulatory protein, additional roles for Tat in HIV replication have been described, including reverse transcription. Tat achieves function through direct interaction with viral proteins, including reverse transcriptase, and numerous cellular proteins including cyclin T1, RNA polymerase 11, protein kinase R (PKR), p300/CBP, and P/CAF. Despite our advanced knowledge of how Tat operates, this has not yet resulted in the discovery of effective agents capable of targeting various Tat functions. Nevertheless, Tat remains an attractive, virus-specific molecule and detailed understanding of specific protein interaction holds promise for future drug discovery.
Resumo:
Regulation of monocyte adhesion molecule gene expression is via redox sensitive transcription factors. We have investigated whether dietary antioxidant supplementation with vitamin C (250mg/day) can modulate monocyte ICAM-1 expression in healthy male subjects with low plasma vitamin C at baseline. In a randomised, double-blind, crossover study, monocyte ICAM-1 mRNA was analysed using quantitative reverse transcriptase PCR. Protein was determined by flow cytometry (monocytes) and ELISA (plasma). Monocyte numbers were unaltered by supplementation. Subjects with low plasma vitamin C (<50μM) prior to supplementation expressed higher levels of monocyte ICAM-1mRNA, and showed a significant (50%) reduction in ICAM-1mRNA expression after 6 weeks of 250mg/day vitamin C supplementation (p<0.05). This was paralleled by a reduction in sICAM-1 (p<0.05). For the first time, these results show that dietary vitamin C can modulate monocyte ICAM-1 gene expression in vivo, where regulation of gene expression represents a novel mechanism for benefit from dietary antioxidants. © 2003 Elsevier Inc. All rights reserved.
Resumo:
Despite significant advances in highly active antiretroviral therapy (HAART), the prevalence of neuroAIDS remains high. This is mainly attributed to inability of antiretroviral therapy (ART) to cross the blood–brain barrier (BBB), thus resulting in insufficient drug concentration within the brain. Therefore, development of an active drug targeting system is an attractive strategy to increase the efficacy and delivery of ART to the brain. We report herein development of magnetic azidothymidine 5′-triphosphate (AZTTP) liposomal nanoformulation and its ability to transmigrate across an in vitro BBB model by application of an external magnetic field. We hypothesize that this magnetically guided nanoformulation can transverse the BBB by direct transport or via monocyte-mediated transport. Magnetic AZTTP liposomes were prepared using a mixture of phosphatidyl choline and cholesterol. The average size of prepared liposomes was about 150 nm with maximum drug and magnetite loading efficiency of 54.5% and 45.3%, respectively. Further, magnetic AZTTP liposomes were checked for transmigration across an in vitro BBB model using direct or monocyte-mediated transport by application of an external magnetic field. The results show that apparent permeability of magnetic AZTTP liposomes was 3-fold higher than free AZTTP. Also, the magnetic AZTTP liposomes were efficiently taken up by monocytes and these magnetic monocytes showed enhanced transendothelial migration compared to normal/non-magnetic monocytes in presence of an external magnetic field. Thus, we anticipate that the developed magnetic nanoformulation can be used for targeting active nucleotide analog reverse transcriptase inhibitors to the brain by application of an external magnetic force and thereby eliminate the brain HIV reservoir and help to treat neuroAIDS.
Resumo:
A new modality for preventing HIV transmission is emerging in the form of topical microbicides. Some clinical trials have shown some promising results of these methods of protection while other trials have failed to show efficacy. Due to the relatively novel nature of microbicide drug transport, a rigorous, deterministic analysis of that transport can help improve the design of microbicide vehicles and understand results from clinical trials. This type of analysis can aid microbicide product design by helping understand and organize the determinants of drug transport and the potential efficacies of candidate microbicide products.
Microbicide drug transport is modeled as a diffusion process with convection and reaction effects in appropriate compartments. This is applied here to vaginal gels and rings and a rectal enema, all delivering the microbicide drug Tenofovir. Although the focus here is on Tenofovir, the methods established in this dissertation can readily be adapted to other drugs, given knowledge of their physical and chemical properties, such as the diffusion coefficient, partition coefficient, and reaction kinetics. Other dosage forms such as tablets and fiber meshes can also be modeled using the perspective and methods developed here.
The analyses here include convective details of intravaginal flows by both ambient fluid and spreading gels with different rheological properties and applied volumes. These are input to the overall conservation equations for drug mass transport in different compartments. The results are Tenofovir concentration distributions in time and space for a variety of microbicide products and conditions. The Tenofovir concentrations in the vaginal and rectal mucosal stroma are converted, via a coupled reaction equation, to concentrations of Tenofovir diphosphate, which is the active form of the drug that functions as a reverse transcriptase inhibitor against HIV. Key model outputs are related to concentrations measured in experimental pharmacokinetic (PK) studies, e.g. concentrations in biopsies and blood. A new measure of microbicide prophylactic functionality, the Percent Protected, is calculated. This is the time dependent volume of the entire stroma (and thus fraction of host cells therein) in which Tenofovir diphosphate concentrations equal or exceed a target prophylactic value, e.g. an EC50.
Results show the prophylactic potentials of the studied microbicide vehicles against HIV infections. Key design parameters for each are addressed in application of the models. For a vaginal gel, fast spreading at small volume is more effective than slower spreading at high volume. Vaginal rings are shown to be most effective if inserted and retained as close to the fornix as possible. Because of the long half-life of Tenofovir diphosphate, temporary removal of the vaginal ring (after achieving steady state) for up to 24h does not appreciably diminish Percent Protected. However, full steady state (for the entire stromal volume) is not achieved until several days after ring insertion. Delivery of Tenofovir to the rectal mucosa by an enema is dominated by surface area of coated mucosa and whether the interiors of rectal crypts are filled with the enema fluid. For the enema 100% Percent Protected is achieved much more rapidly than for vaginal products, primarily because of the much thinner epithelial layer of the mucosa. For example, 100% Percent Protected can be achieved with a one minute enema application, and 15 minute wait time.
Results of these models have good agreement with experimental pharmacokinetic data, in animals and clinical trials. They also improve upon traditional, empirical PK modeling, and this is illustrated here. Our deterministic approach can inform design of sampling in clinical trials by indicating time periods during which significant changes in drug concentrations occur in different compartments. More fundamentally, the work here helps delineate the determinants of microbicide drug delivery. This information can be the key to improved, rational design of microbicide products and their dosage regimens.
Resumo:
Abstract : Adverse drug reactions (ADRs) are undesirable effects caused after administration of a single dose or prolonged administration of drug or result from the combination of two or more drugs. Idiosyncratic drug reaction (IDR) is an adverse reaction that does not occur in most patients treated with a drug and does not involve the therapeutic effect of the drug. IDRs are unpredictable and often life-threatening. Idiosyncratic reaction is dependent on drug chemical characteristics or individual immunological response. IDRs are a major problem for drug development because they are usually not detected during clinical trials. In this study we focused on IDRs of Nevirapine (NVP), which is a non-nucleoside reverse transcriptase inhibitor used for the treatment of Human Immunodeficiency Virus (HIV) infections. The use of NVP is limited by a relatively high incidence of skin rash. NVP also causes a rash in female Brown Norway (BN) rats, which we use as animal model for this study. Our hypothesis is that idiosyncratic skin reactions associated with NVP treatment are due to post-translational modifications of proteins (e.g., glutathionylation) detectable by MS. The main objective of this study was to identify the proteins that are targeted by a reactive metabolite of Nevirapine in the skin. The specific objectives derived from the general objective were as follow: 1) To implement the click chemistry approach to detect proteins modified by a reactive NVP-Alkyne (NVP-ALK) metabolite. The purpose of using NVP-ALK was to couple it with Biotin using cycloaddition Click Chemistry reaction. 2) To detect protein modification using Western blotting and Mass Spectrometry techniques, which is important to understand the mechanism of NVP induced toxicity. 3) To identify the proteins using MASCOT search engine for protein identification, by comparing obtained spectrum from Mass Spectrometry with theoretical spectrum to find a matching peptide sequence. 4) To test if the drug or drug metabolites can cause harmful effects, as the induction of oxidative stress in cells (via protein glutathionylation). Oxidative stress causes cell damage that mediates signals, which likely induces the immune response. The results showed that Nevirapine is metabolized to a reactive metabolite, which causes protein modification. The extracted protein from the treated BN rats matched 10% of keratin, which implies that keratin was the protein targeted by the NVP-ALK.
Resumo:
A simple and fast capillary zone electrophoresis (CZE) method has been developed and validated for quantification of a non-nucleoside reverse transcriptase inhibitor (NNRTI) nevirapine, in pharmaceuticals. The analysis was optimized using 10 mmol L-1 sodium phosphate buffer pH 2.5, +25 kV applied voltage, hydrodynamic injection 0.5 psi for 5 s and direct UV detection at 200 µm. Diazepam (50.0 µg mL-1) was used as internal standard. Under these conditions, nevirapine was analyzed in approximately less than 2.5 min. The analytical curve presented a coefficient of correlation of 0.9994. Limits of detection and quantification were 1.4 µg mL-1 and 4.3 µg mL-1, respectively. Intra- and inter-day precision expressed as relative standard deviations were 1.4% and 1.3%, respectively and the mean recovery was 100.81%. The active pharmaceutical ingredient was subjected to hydrolysis (acid, basic and neutral) and oxidative stress conditions. No interference of degradation products and tablet excipients were observed. This method showed to be rapid, simple, precise, accurate and economical for determination of nevirapine in pharmaceuticals and it is suitable for routine quality control analysis since CE offers benefits in terms of quicker method development and significantly reduced operating costs.
Resumo:
The T cell immunoglobulin mucin 3 (Tim-3) receptor is highly expressed on HIV-1-specific T cells, rendering them partially ""exhausted'' and unable to contribute to the effective immune mediated control of viral replication. To elucidate novel mechanisms contributing to the HTLV-1 neurological complex and its classic neurological presentation called HAM/TSP (HTLV-1 associated myelopathy/tropical spastic paraparesis), we investigated the expression of the Tim-3 receptor on CD8(+) T cells from a cohort of HTLV-1 seropositive asymptomatic and symptomatic patients. Patients diagnosed with HAM/TSP down-regulated Tim-3 expression on both CD8(+) and CD4(+) T cells compared to asymptomatic patients and HTLV-1 seronegative controls. HTLV-1 Tax-specific, HLA-A*02 restricted CD8(+) T cells among HAM/TSP individuals expressed markedly lower levels of Tim-3. We observed Tax expressing cells in both Tim-3(+) and Tim-3(-) fractions. Taken together, these data indicate that there is a systematic downregulation of Tim-3 levels on T cells in HTLV-1 infection, sustaining a profoundly highly active population of potentially pathogenic T cells that may allow for the development of HTLV-1 complications.
Resumo:
Background: The genetic diversity of the human immunodeficiency virus type 1 (HIV-1) is critical to lay the groundwork for the design of successful drugs or vaccine. In this study we aimed to characterize and define the molecular prevalence of HIV-1 subclade F1 currently circulating in Sao Paulo, Brazil. Methods: A total of 36 samples were selected from 888 adult patients residing in Sao Paulo who had previously been diagnosed in two independent studies in our laboratory as being infected with subclade F1 based on pol subgenomic fragment sequencing. Proviral DNA was amplified from the purified genomic DNA of all 36 blood samples by 5 fragments overlapping PCR followed by direct sequencing. Sequence data were obtained from the 5 fragments of pure subclade F1 and phylogenetic trees were constructed and compared with previously published sequences. Subclades F1 that exhibited mosaic structure with other subtypes were omitted from any further analysis Results: Our methods of fragment amplification and sequencing confirmed that only 5 sequences inferred from pol region as subclade F1 also holds true for the genome as a whole and, thus, estimated the true prevalence at 0.56%. The results also showed a single phylogenetic cluster of the Brazilian subclade F1 along with non-Brazilian South American isolates in both subgenomic and the full-length genomes analysis with an overall intrasubtype nucleotide divergence of 6.9%. The nucleotide differences within the South American and Central African F1 strains, in the C2-C3 env, were 8.5% and 12.3%, respectively. Conclusion: All together, our findings showed a surprisingly low prevalence rate of subclade F1 in Brazil and suggest that these isolates originated in Central Africa and subsequently introduced to South America.
Resumo:
T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+) T cells are important for the generation and maintenance of functional CD8(+) cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18), capable of eliciting broad CD4(+) T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+)/CD8(+) T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+) and CD8(+) T cells that proliferate and produce any two cytokines (IFN gamma/TNF alpha, IFN gamma/IL-2 or TNF alpha/IL-2) simultaneously in response to HIV-1 peptides. For CD4(+) T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFN gamma/TNF alpha/IL-2). The vaccine also generated long-lived central and effector memory CD4(+) T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+) T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+) T cells and antibody responses-elicited by other HIV immunogens.
Resumo:
In this study, 222 genome survey sequences were generated for Trypanosoma rangeli strain P07 isolated from an opossum (Didelphis albiventris) in Minas Gerais State, Brazil. T. rangeli sequences were compared by BLASTX (Basic Local Alignment Search Tool X) analysis with the assembled contigs of Leishmania braziliensis, Leishmania infantum, Leishmania major, Trypanosoma brucei, and Trypanosoma cruzi. Results revealed that 82% (182/222) of the sequences were associated with predicted proteins described, whereas 18% (40/222) of the sequences did not show significant identity with sequences deposited in databases, suggesting that they may represent T. rangeli-specific sequences. Among the 182 predicted sequences, 179 (80.6%) had the highest similarity with T. cruzi, 2 (0.9%) with T. brucei, and 1 (0.5%) with L. braziliensis. Computer analysis permitted the identification of members of various gene families described for trypanosomatids in the genome of T. rangeli, such as trans-sialidases, mucin-associated surface proteins, and major surface proteases (MSP or gp63). This is the first report identifying sequences of the MSP family in T. rangeli. Multiple sequence alignments showed that the predicted MSP of T. rangeli presented the typical characteristics of metalloproteases, such as the presence of the HEXXH motif, which corresponds to a region previously associated with the catalytic site of the enzyme, and various cysteine and proline residues, which are conserved among MSPs of different trypanosomatid species. Reverse transcriptase-polymerase chain reaction analysis revealed the presence of MSP transcripts in epimastigote forms of T. rangeli.
Resumo:
Background: Worldwide, a high proportion of HIV-infected individuals enter into HIV care late. Here, our objective was to estimate the impact that late entry into HIV care has had on AIDS mortality rates in Brazil. Methodology/Principal Findings: We analyzed data from information systems regarding HIV-infected adults who sought treatment at public health care facilities in Brazil from 2003 to 2006. We initially estimated the prevalence of late entry into HIV care, as well as the probability of death in the first 12 months, the percentage of the risk of death attributable to late entry, and the number of avoidable deaths. We subsequently adjusted the annual AIDS mortality rate by excluding such deaths. Of the 115,369 patients evaluated, 50,358 (43.6%) had entered HIV care late, and 18,002 died in the first 12 months, representing a 16.5% probability of death in the first 12 months (95% CI: 16.3-16.7). By comparing patients who entered HIV care late with those who gained timely access, we found that the risk ratio for death was 49.5 (95% CI: 45.1-54.2). The percentage of the risk of death attributable to late entry was 95.5%, translating to 17,189 potentially avoidable deaths. Averting those deaths would have lowered the 2003-2006 AIDS mortality rate by 39.5%. Including asymptomatic patients with CD4(+) T cell counts >200 and <= 350 cells/mm(3) in the group who entered HIV care late increased this proportion by 1.8%. Conclusions/Significance: In Brazil, antiretroviral drugs reduced AIDS mortality by 43%. Timely entry would reduce that rate by a similar proportion, as well as resulting in a 45.2% increase in the effectiveness of the program for HIV care. The World Health Organization recommendation that asymptomatic patients with CD4(+) T cell counts <= 350 cells/mm(3) be treated would not have a significant impact on this scenario.
Resumo:
Moniliophthora perniciosa is a hemibiotrophic fungus that causes witches` broom disease (WBD) in cacao. Marked dimorphism characterizes this fungus, showing a monokaryotic or biotrophic phase that causes disease symptoms and a later dikaryotic or saprotrophic phase. A combined strategy of DNA microarray, expressed sequence tag, and real-time reverse-transcriptase polymerase chain reaction analyses was employed to analyze differences between these two fungal stages in vitro. In all, 1,131 putative genes were hybridized with cDNA from different phases, resulting in 189 differentially expressed genes, and 4,595 reads were clusterized, producing 1,534 unigenes. The analysis of these genes, which represent approximately 21% of the total genes, indicates that the biotrophic-like phase undergoes carbon and nitrogen catabollite repression that correlates to the expression of phytopathogenicity genes. Moreover, downregulation of mitochondrial oxidative phosphorylation and the presence of a putative ngr1 of Saccharomyces cerevisiae could help explain its lower growth rate. In contrast, the saprotrophic mycelium expresses genes related to the metabolism of hexoses, ammonia, and oxidative phosphorylation, which could explain its faster growth. Antifungal toxins were upregulated and could prevent the colonization by competing fungi. This work significantly contributes to our understanding of the molecular mechanisms of WBD and, to our knowledge, is the first to analyze differential gene expression of the different phases of a hemibiotrophic fungus.