963 resultados para Genes, erbB-2 -- genetics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vomeronasal receptor 1 (V1R) are believed to be pheromone receptors in rodents. Here we used computational methods to identify 95 and 62 new putative V1R genes from the draft rat and mouse genome sequence, respectively. The rat V1R repertoire consists of 11 subfamilies, 10 of which are shared with the mouse, while rat appears to lack the H and I subfamilies found in mouse and possesses one unique subfamily (M). The estimations of the relative divergence times suggest that many subfamilies originated after the split of rodents and primates. The analysis also reveals that these clusters underwent an expansion very close to the split of mouse and rat. In addition, maximum likelihood analysis showed that the nonsynonymous and synonymous rate ratio for most of these clusters was much higher than one, suggesting the role of positive selection in the diversification of these duplicated V1R genes. Because V1R are thought to mediate the process of signal transduction in response to pheromone detection, we speculate that the V1R genes have evolved under positive Darwinian selection to maintain the ability to discriminate between large and complex pheromonal mixtures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pantherine lineage of the cat family Felidae (order: Carnivora) includes five big cats of genus Panthera and a great many midsized cats known worldwide. Presumably because of their recent and rapid radiation, the evolutionary relationship among pantherines remains ambiguous. We provide an independent assessment of the evolutionary history of pantherine lineage using two complete mitochondrial (mt) genes (ND2 and ND4) and the nuclear beta-fibrmogen intron 7 gene, whose utility in carnivoran phylogeny was first explored. The available four mt (ND5, cytb, 12S, and 16SrRNA) and two nuclear (IRBP and TTR) sequence loci were also combined to reconstruct phylogeny of 14 closely related cat species. Our analyses of combined mt data (six genes; approximate to 3750 bp) and combined mt and nuclear data (nine genes; approximate to 6500 bp) obtained identical tree topologies, which were well-resolved and strongly supported for almost all nodes. Monophyly of Panthera genus in pantherine lineage was confirmed and interspecific affinities within this genus revealed a novel branching pattern, with P. tigris diverging first in Panthera genus, followed by P. onca, P. leo, and last two sister species P. pardus and P. uncia. In addition, close association of Neofelis nebulosa to Panthera, the phylogenetic redefinition of Otocolobus manil within the domestic cat group, and the relatedness of Acinonyx jubatus and Puma concolor were all important findings in the resulting phylogenies. The potential utilities of nine different genes for phylogenetic resolution of closely related pantherine species were also evaluated, with special interest in that of the novel nuclear beta-fibrinogen intron 7. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monophyletic group Caniformia in the order Carnivora currently comprises seven families whose relationships remain contentious. The phylogenetic positions of the two panda species within the Caniformia have also been evolutionary puzzles over the past

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Polymorphisms of CLEC4M have been associated with predisposition for infection by the severe acute respiratory syndrome coronavirus (SARS-CoV). DC-SIGNR, a C-type lectin encoded by CLEC4M, is a receptor for the virus. A variable number tandem

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phylogenetic relationships among 12 genera of treefrogs (Family, Rhacophoridae), were investigated based on a large sequence data set, including five nuclear (brain-derived neurotrophic factor, proopiomelanocortin, recombination activating gene 1, tyr

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the course of evolution, the human skeletal system has evolved rapidly leading to an incredible array of phenotypic diversity, including variations in height and bone mineral density. However, the genetic basis of this phenotypic diversity and the relatively rapid tempo of evolution have remained largely undocumented. Here, we discover that skeletal genes exhibit a significantly greater level of population differentiation among humans compared with other genes in the genome. The pattern is exceptionally evident at amino acid-altering sites within these genes. Divergence is greater between Africans and both Europeans and East Asians. In contrast, relatively weak differentiation is observed between Europeans and East Asians. SNPs with higher levels of differentiation have correspondingly higher derived allele frequencies in Europeans and East Asians. Thus, it appears that positive selection has operated on skeletal genes in the non-African populations and this may have been initiated with the human colonization of Eurasia. In conclusion, we provide genetic evidence supporting the rapid evolution of the human skeletal system and the associated diversity of phenotypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bat flight poses intriguing questions about how flight independently developed in mammals. Flight is among the most energy-consuming activities. Thus, we deduced that changes in energy metabolism must be a primary factor in the origin of flight in bats. The respiratory chain of the mitochondrial produces 95% of the adenosine triphosphate (ATP) needed for locomotion. Because the respiratory chain has a dual genetic foundation, with genes encoded by both the mitochondrial and nuclear genomes, we examined both genomes to gain insights into the evolution of flight within mammals. Evidence for positive selection was detected in 23.08% of the mitochondrial-encoded and 4.90% of nuclear-encoded oxidative phosphorylation (OXPHOS) genes, but in only 2.25% of the nuclear-encoded nonrespiratory genes that function in mitochondria or 1.005% of other nuclear genes in bats. To address the caveat that the two available bat genomes are of only draft quality, we resequenced 77 OXPHOS genes from four species of bats. The analysis of the resequenced gene data are in agreement with our conclusion that a significantly higher proportion of genes involved in energy metabolism, compared with background genes, show evidence of adaptive evolution specific on the common ancestral bat lineage. Both mitochondrial and nuclear-encoded OXPHOS genes display evidence of adaptive evolution along the common ancestral branch of bats, supporting our hypothesis that genes involved in energy metabolism were targets of natural selection and allowed adaptation to the huge change in energy demand that were required during the origin of flight.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leber hereditary optic neuropathy (LHON) is the most extensively studied mitochondrial disease, with the majority of the cases being caused by one of three primary mitochondrial DNA (mtDNA) mutations. Incomplete disease penetrance and gender bias are two

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synonymous codon bias has been examined in 78 human genes (19967 codons) and measured by relative synonymous codon usage (RSCU). Relative frequencies of all kinds of dinucleotides in 2,3 or 3,4 codon positions have been calculated, and codon-anticodon bin

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genome data have revealed great variation in the numbers of genes in different organisms, which indicates that there is a fundamental process of genome evolution: the origin of new genes. However, there has been little opportunity to explore how genes with new functions originate and evolve. The study of ancient genes has highlighted the antiquity and general importance of some mechanisms of gene origination, and recent observations of young genes at early stages in their evolution have unveiled unexpected molecular and evolutionary processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gene fission and fusion, the processes by which a single gene is split into two separate genes and two adjacent genes are fused into a single gene, respectively, are among the primary processes that generate new genes(1-4). Despite their seeming reversibi

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gene number difference among organisms demonstrates that new gene origination is a fundamental biological process in evolution. Exon shuffling has been universally observed in the formation of new genes. Yet to be learned are the ways new exons originate and evolve, and how often new exons appear. To address these questions, we identified 2695 newly evolved exons in the mouse and rat by comparing the expressed sequences of 12,419 orthologous genes between human and mouse, using 743,856 pig ESTs as the outgroup. The new exon origination rate is about 2.71 x 10(-3) per gene per million years. These new exons have markedly accelerated rates both of nonsynonymous substitutions and of insertions/ deletions (indels). A much higher proportion of new exons have Kappa(a)/Kappa(s) ratios > 1 (where K-a is the nonsynonymous substitution rate and K-s is the synonymous substitution rate) than K do the old exons shared by human and mouse, implying a role of positive selection in the rapid evolution. The majority of these new exons have sequences unique in the genome, suggesting that most new exons might originate through "exonization" of intronic sequences. Most of the new exons appear to be alternative exons that are expressed at low levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inherent interest on the origin of genetic novelties can be traced back to Darwin. But it was not until recently that we were allowed to investigate the fundamental process of origin of new genes by the studies on newly evolved Young genes. Two indisp

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several mechanisms have been proposed to account for the origination of new genes. Despite extensive case studies, the general principles governing this fundamental process are still unclear at the whole-genome level. Here, we unveil genome-wide patterns