886 resultados para Gene Expression Regulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSC) are multipotent cells which can be obtained from several adult and fetal tissues including human umbilical cord units. We have recently shown that umbilical cord tissue (UC) is richer in MSC than umbilical cord blood (UCB) but their origin and characteristics in blood as compared to the cord remains unknown. Here we compared, for the first time, the exonic protein-coding and intronic noncoding RNA (ncRNA) expression profiles of MSC from match-paired UC and UCB samples, harvested from the same donors, processed simultaneously and under the same culture conditions. The patterns of intronic ncRNA expression in MSC from UC and UCB paired units were highly similar, indicative of their common donor origin. The respective exonic protein-coding transcript expression profiles, however, were significantly different. Hierarchical clustering based on protein-coding expression similarities grouped MSC according to their tissue location rather than original donor. Genes related to systems development, osteogenesis and immune system were expressed at higher levels in UCB, whereas genes related to cell adhesion, morphogenesis, secretion, angiogenesis and neurogenesis were more expressed in UC cells. These molecular differences verified in tissue-specific MSC gene expression may reflect functional activities influenced by distinct niches and should be considered when developing clinical protocols involving MSC from different sources. In addition, these findings reinforce our previous suggestion on the importance of banking the whole umbilical cord unit for research or future therapeutic use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipid emulsion (LE) containing medium/omega-6 long chain triglyceride-based emulsion (MCT/omega-6 LCT LE) has been recommended in the place of omega-6 LCT-based emulsion to prevent impairment of immune function. The impact of MCT/omega-6 LCT LE on lymphocyte and neutrophil death and expression of genes related to inflammation was investigated. Seven volunteers were recruited and infusion of MCT/omega-6 LCT LE was performed for 6 h. Four volunteers received saline and no change was found. Blood samples were collected before, immediately afterwards and 18 h after LE infusion. Lymphocytes and neutrophils were studied immediately after isolation and after 24 and 48 h in culture. The following determinations were carried out: plasma-free fatty acids, triacylglycerol and cholesterol concentrations, plasma fatty acid composition, neutral lipid accumulation in lymphocytes and neutrophils, signs of lymphocyte and neutrophil death and lymphocyte expression of genes related to inflammation. MCT/omega-6 LCT LE induced lymphocyte and neutrophil death. The mechanism for MCT/omega-6 LCT LE-dependent induction of leucocyte death may involve changes in neutral lipid content and modulation of expression of genes related to cell death, proteolysis, cell signalling, inflammatory response, oxidative stress and transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we investigate the effect of a single session of high-intensity contractions on expression of pleiotropic genes and, in particular, those genes associated with metabolism in soleus muscle from electrically stimulated (ES) and contralateral (CL) limbs. The right limbs of male Wistar rats were submitted to contractions by 200-ms trains of electrical stimulation at 100-Hz frequency with pulses of 0.1 ms (voltage 24 3 V) delivered each second for 1 hour. Soleus muscles were isolated 1 hour after contraction, and gene expression was analyzed by a macroarray technique (Atlas Toxicology 1.2 Array; Clontech Laboratories). Electrical stimulation increased expression in 92 genes (16% of the genes present in the membrane). Sixty-six genes were upregulated in both ES and CL soleus muscles, and expression of 26 genes was upregulated in the ES muscle only. The most altered genes were those related to stress response and metabolism. Electrical stimulation also raised expression of transcription factors, translation and posttranslational modification of proteins, ribosomal proteins, and intracellular transducers/effectors/modulators. The results indicate that a single session of electrical stimulation upregulated expression of genes related to metabolism and oxidative stress in soleus muscle from both ES and CL limbs. These findings may indicate an association with tissue hypertrophy and metabolic adaptations induced by physical exercise training not only in the ES but also in the CL non-stimulated muscle, suggesting a cross-education phenomenon. Muscle Nerve 40: 838-846, 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inhibitory effect of supraphysiological iodide concentrations on thyroid hormone synthesis (Wolff - Chaikoff effect) and on thyrocyte proliferation is largely known as iodine autoregulation. However, the molecular mechanisms by which iodide modulates thyroid function remain unclear. In this paper, we analyze the transcriptome profile of the rat follicular cell lineage PCCl3 under untreated and treated conditions with 10 (- 3) M sodium iodide (NaI). Serial analysis of gene expression (SAGE) revealed 84 transcripts differentially expressed in response to iodide (p <= 0.001). We also showed that iodide excess inhibits the expression of essential genes for thyroid differentiation: Tshr, Nis, Tg, and Tpo. Relative expression of 14 of 20 transcripts selected by SAGE was confirmed by real-time PCR. Considering the key role of iodide organification in thyroid physiology, we also observed that both the oxidized form of iodide and iodide per se are responsible for gene expression modulation in response to iodide excess. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insect oocytes grow in close association with the ovarian follicular epithelium (OFE), which escorts the oocyte during oogenesis and is responsible for synthesis and secretion of the eggshell. We describe a transcriptome of OFE of the triatomine bug Rhodnius prolixus, a vector of Chagas disease, to increase our knowledge of the role of FE in egg development. Random clones were sequenced from a cDNA library of different stages of follicle development. The transcriptome showed high commitment to transcription, protein synthesis, and secretion. The most abundant cDNA was a secreted (S) small, proline-rich protein with maximal expression in the vitellogenic follicle, suggesting a role in oocyte maturation. We also found Rp45, a chorion protein already described, and a putative chitin-associated cuticle protein that was an eggshell component candidate. Six transcripts coding for proteins related to the unfolded-protein response (UPR) by were chosen and their expression analyzed. Surprisingly, transcripts related to UPR showed higher expression during early stages of development and downregulation during late stages, when transcripts coding for S proteins participating in chorion formation were highly expressed. Several transcripts with potential roles in oogenesis and embryo development are also discussed. We propose that intense protein synthesis at the FE results in reticulum stress (RS) and that lowering expression of a set of genes related to cell survival should lead to degeneration of follicular cells at oocyte maturation. This paradoxical suppression of UPR suggests that ovarian follicles may represent an interesting model for studying control of RS and cell survival in professional S cell types. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology is poorly understood. We hypothesized that the circadian clock within the cardiomyocyte influences diurnal variations in myocardial biology. We, therefore, generated a cardiomyocyte-specific circadian clock mutant (CCM) mouse to test this hypothesis. At 12 wk of age, CCM mice exhibit normal myocardial contractile function in vivo, as assessed by echocardiography. Radiotelemetry studies reveal attenuation of heart rate diurnal variations and bradycardia in CCM mice (in the absence of conduction system abnormalities). Reduced heart rate persisted in CCM hearts perfused ex vivo in the working mode, highlighting the intrinsic nature of this phenotype. Wild-type, but not CCM, hearts exhibited a marked diurnal variation in responsiveness to an elevation in workload (80 mmHg plus 1 mu M epinephrine) ex vivo, with a greater increase in cardiac power and efficiency during the dark (active) phase vs. the light (inactive) phase. Moreover, myocardial oxygen consumption and fatty acid oxidation rates were increased, whereas cardiac efficiency was decreased, in CCM hearts. These observations were associated with no alterations in mitochondrial content or structure and modest mitochondrial dysfunction in CCM hearts. Gene expression microarray analysis identified 548 and 176 genes in atria and ventricles, respectively, whose normal diurnal expression patterns were altered in CCM mice. These studies suggest that the cardiomyocyte circadian clock influences myocardial contractile function, metabolism, and gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We hypothesize that, in kidney of diabetic rats, hepatocyte nuclear factors (HNF-1 alpha. and HNF-3 beta) play a critical role in the overexpression of solute carrier 2A2 (SLC2A2) gene. Diabetic rats submitted or not to rapid (up to 12 h) and short-term (1, 4 and 6 days) insulin treatment were investigated. Twofold increase in GLUT2 mRNA was observed in diabetic, accompanied by significant increases in HNF-1 alpha and HNF-3 beta expression and binding activity. Additional 2-fold increase in GLUT2 mRNA and HNF-3 beta expression/activity was observed in 12-h insulin-treated rats. Six-day insulin treatment decreased GLUT2 mRNA and HNF-1 alpha expression and activity to levels of non-diabetic rats, whereas HNF-3 beta decreased to levels of non-insulin-treated diabetic rats. Our results provide evidence for a link between the overexpression of SLC2A2 gene and the transcriptional activity of HNF-1 alpha and HNF-3 beta in kidney of diabetic rats. Furthermore, recovery of SLC2A2 gene after 6-day insulin treatment also involves HNF-1 alpha and HNF-3 beta activity. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present an algorithm for cluster analysis that integrates aspects from cluster ensemble and multi-objective clustering. The algorithm is based on a Pareto-based multi-objective genetic algorithm, with a special crossover operator, which uses clustering validation measures as objective functions. The algorithm proposed can deal with data sets presenting different types of clusters, without the need of expertise in cluster analysis. its result is a concise set of partitions representing alternative trade-offs among the objective functions. We compare the results obtained with our algorithm, in the context of gene expression data sets, to those achieved with multi-objective Clustering with automatic K-determination (MOCK). the algorithm most closely related to ours. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lung cancer is the leading cause of cancer deaths in the United States, surpassing breast cancer as the primary cause of cancer-related mortality in women. The goal of the present study was to identify early molecular changes in the lung induced by exposure to tobacco smoke and thus identify potential targets for chemoprevention. Female A/J mice were exposed to either tobacco smoke or HEPA-filtered air via a whole-body exposure chamber (6 h/d, 5 d/wk for 3, 8, and 20 weeks). Gene expression profiles of lung tissue from control and smoke-exposed animals were established using a 15K cDNA microarray. Cytochrome P450 1b1, a phase I enzyme involved in both the metabolism of xenobiotics and the 4-hydroxylation of 17 beta-estradiol (E(2)), was modulated to the greatest extent following smoke exposure. A panel of 10 genes were found to be differentially expressed in control and smoke-exposed lung tissues at 3, 8, and 20 weeks (P < 0.001). The interaction network of these differentially expressed genes revealed new pathways modulated by short-term smoke exposure, including estrogen metabolism. In addition, E(2) was detected within murine lung tissue by gas chromatography-coupled mass spectrometry and immunohistochemistry. Identification of the early molecular events that contribute to lung tumor formation is anticipated to lead to the development of promising targeted chemopreventive therapies. In conclusion, the presence of E2 within lung tissue when combined with the modulation of cytochrome P450 1b1 and other estrogen metabolism genes by tobacco smoke provides novel insight into a possible role for estrogens in lung cancer. Cancer Prev Res; 3(6); 707-17. (C) 2010 AACR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blastocladiella emersonii is an aquatic fungus of the Chytridiomycete class. During germination, the zoospore, a motile nongrowing cell, goes through a cascade of morphological changes that culminates with its differentiation into the germling cell, capable of coenocytic vegetative growth. Transcriptome analyses of B. emersonii cells were carried out during germination induced under various environmental conditions. Microarray data analyzing 3,563 distinct B. emersonii genes revealed that 26% of them are differentially expressed during germination in nutrient medium at at least one of the time points investigated. Over 500 genes are upregulated during the time course of germination under those conditions, most being related to cell growth, including genes involved in protein biosynthesis, DNA transcription, energetic metabolism, carbohydrate and oligopeptide transport, and cell cycle control. On the other hand, several transcripts stored in the zoospores are downregulated during germination in nutrient medium, such as genes involved in signal transduction, amino acid transport, and chromosome organization. In addition, germination induced in the presence of nutrients was compared with that triggered either by adenine or potassium ions in inorganic salt solution. Several genes involved in cell growth, induced during germination in nutrient medium, do not show increased expression when B. emersonii zoospores germinate in inorganic solution, suggesting that nutrients exert a positive effect on gene transcription. The transcriptome data also revealed that most genes involved in cell signaling show the same expression pattern irrespective of the initial germination stimulus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the xylem vessels of susceptible hosts, such as citrus trees, Xylella fastidiosa forms biofilm-like colonies that can block water transport, which appears to correlate to disease symptoms. Besides aiding host colonization, bacterial biofilms play an important role in resistance against antimicrobial agents, for instance antimicrobial peptides (AMPs). Here, we show that gomesin, a potent AMP from a tarantula spider, modulates X. fastidiosa gene expression profile upon 60 min of treatment with a sublethal concentration. DNA microarray hybridizations revealed that among the upregulated coding sequences, some are related to biofilm production. In addition, we show that the biofilm formed by gomesin-treated bacteria is thicker than that formed by nontreated cells or cells exposed to streptomycin. We have also observed that the treatment of X. fastidiosa with a sublethal concentration of gomesin before inoculation in tobacco plants correlates with a reduction in foliar symptoms, an effect possibly due to the trapping of bacterial cells to fewer xylem vessels, given the enhancement in biofilm production. These results warrant further investigation of how X. fastidiosa would respond to the AMPs produced by citrus endophytes and by the insect vector, leading to a better understanding of the mechanism of action of these molecules on bacterial virulence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Blastocladiella emersonii life cycle presents a number of drastic biochemical and morphological changes, mainly during two cell differentiation stages: germination and sporulation. To investigate the transcriptional changes taking place during the sporulation phase, which culminates with the production of the zoospores, motile cells responsible for the dispersal of the fungus, microarray experiments were performed. Among the 3,773 distinct genes investigated, a total of 1,207 were classified as differentially expressed, relative to time zero of sporulation, at at least one of the time points analyzed. These results indicate that accurate transcriptional control takes place during sporulation, as well as indicating the necessity for distinct molecular functions throughout this differentiation process. The main functional categories overrepresented among upregulated genes were those involving the microtubule, the cytoskeleton, signal transduction involving Ca(2+), and chromosome organization. On the other hand, protein biosynthesis, central carbon metabolism, and protein degradation were the most represented functional categories among downregulated genes. Gene expression changes were also analyzed in cells sporulating in the presence of subinhibitory concentrations of glucose or tryptophan. Data obtained revealed overexpression of microtubule and cytoskeleton transcripts in the presence of glucose, probably causing the shape and motility problems observed in the zoospores produced under this condition. In contrast, the presence of tryptophan during sporulation led to upregulation of genes involved in oxidative stress, proteolysis, and protein folding. These results indicate that distinct physiological pathways are involved in the inhibition of sporulation due to these two classes of nutrient sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been postulated that noncoding RNAs (ncRNAs) are involved in the posttranscriptional control of gene expression, and may have contributed to the emergence of the complex attributes observed in mammalians. We show here that the complement of ncRNAs expressed from intronic regions of the human and mouse genomes comprises at least 78,147 and 39,660 transcriptional units, respectively. To identify conserved intronic sequences expressed in both humans and mice, we used custom-designed human cDNA microarrays to separately interrogate RNA from mouse and human liver, kidney, and prostate tissues. An overlapping tissue expression signature was detected for both species, comprising 198 transcripts; among these, 22 RNAs map to intronic regions with evidence of evolutionary conservation in humans and mice. Transcription of selected human-mouse intronic ncRNAs was confirmed using strand-specific RT-PCR. Altogether, these results support an evolutionarily conserved role of intronic ncRNAs in human and mouse, which are likely to be involved in the fine tuning of gene expression regulation in different mammalian tissues. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phytohormones gibberellin (GA) and abscisic acid (ABA) regulate important developments events in germinating seeds. Specifically, GA induces the expression of hyrolase genes, like the α-amylase gene Amy32b, which mobilizes starch reserves to be used by the embryo, and ABA suppresses this induction. Recent advancements identified ABA and GA receptors and key components in the signaling pathways, however, the mechanism of crosstalk between the hormones remains largely unknown. To further elucidate the mechanism of ABA suppression of GA-induced genes, we focused on the transcription factor TaABF1, a member of the ABA response element binding factor family. TaABF1 has been shown to physically interact with the SnRK2 kinase PKABA1 and overexpression of TaABF1 or PKABA1 can suppress Amy32b. We carried out particle bombardment experiments to investigate how TaABF1 suppresses Amy32b and how TaABF1 is activated by ABA. The role of TaABF1 in ABA-mediated suppression of Amy32b is more complicated than hypothesized. Unlike PKABA1, overexpression of TaABF1 did not cause a decrease of GAMyb expression and in fact resulted in an increase of GAMyb expression. When TaABF1 and GAMyb were simultaneously overexpressed in aleurone, the GAMyb induction of Amy32b was unaffected, indicating that the target of TaABF1 action must be upstream of GAMyb. Furthermore, TaABF1 and ABA demonstrated an additive effect on the suppression of Amy32b. Based on our findings, we propose a model in which PKABA1 activates two separate targets, one being TaABF1 which then modifies an unknown target upstream of GAMyb and the other being an unknown transcription factor that suppresses GAMyb transcription.