916 resultados para Gabor wavelet filters
Resumo:
With the advantages and popularity of Permanent Magnet (PM) motors due to their high power density, there is an increasing incentive to use them in variety of applications including electric actuation. These applications have strict noise emission standards. The generation of audible noise and associated vibration modes are characteristics of all electric motors, it is especially problematic in low speed sensorless control rotary actuation applications using high frequency voltage injection technique. This dissertation is aimed at solving the problem of optimizing the sensorless control algorithm for low noise and vibration while achieving at least 12 bit absolute accuracy for speed and position control. The low speed sensorless algorithm is simulated using an improved Phase Variable Model, developed and implemented in a hardware-in-the-loop prototyping environment. Two experimental testbeds were developed and built to test and verify the algorithm in real time.^ A neural network based modeling approach was used to predict the audible noise due to the high frequency injected carrier signal. This model was created based on noise measurements in an especially built chamber. The developed noise model is then integrated into the high frequency based sensorless control scheme so that appropriate tradeoffs and mitigation techniques can be devised. This will improve the position estimation and control performance while keeping the noise below a certain level. Genetic algorithms were used for including the noise optimization parameters into the developed control algorithm.^ A novel wavelet based filtering approach was proposed in this dissertation for the sensorless control algorithm at low speed. This novel filter was capable of extracting the position information at low values of injection voltage where conventional filters fail. This filtering approach can be used in practice to reduce the injected voltage in sensorless control algorithm resulting in significant reduction of noise and vibration.^ Online optimization of sensorless position estimation algorithm was performed to reduce vibration and to improve the position estimation performance. The results obtained are important and represent original contributions that can be helpful in choosing optimal parameters for sensorless control algorithm in many practical applications.^
Resumo:
In 1979 the United Nations passed the Convention on the Elimination of All Forms of Discrimination against Women (CEDAW), an international bill of rights for women. Much scholarship has focused on the degree to which states have adopted these new international gender norms, but have paid little attention to the fact that norms change in the processes of implementation. This dissertation focuses on that process assessing the translation of international gender equality norm in Lebanon.^ The study traces global gender equality norms as they are translated into a complex context characterized by a political structure that divides powers according to confessional groups, a social structure that empowers men as heads of families, and a geopolitical structure that opposes a secular West to the Muslim East. Through a comparison of three campaigns – the campaign to combat violence against women, the campaign to change personal status codes, and the campaign to give women equal rights to pass on their nationality – the study traces different ways in which norms are translated as activists negotiate the structures that make up the Lebanese context. Through ethnographic research, the process of norm translation was found to produce various filters, i.e., constellations of arguments put forward by activists as they seek to match international norms to the local context. The dissertation identifies six such filters and finds that these filters often have created faithless translations of international norms.^
Resumo:
In finance literature many economic theories and models have been proposed to explain and estimate the relationship between risk and return. Assuming risk averseness and rational behavior on part of the investor, the models are developed which are supposed to help in forming efficient portfolios that either maximize (minimize) the expected rate of return (risk) for a given level of risk (rates of return). One of the most used models to form these efficient portfolios is the Sharpe's Capital Asset Pricing Model (CAPM). In the development of this model it is assumed that the investors have homogeneous expectations about the future probability distribution of the rates of return. That is, every investor assumes the same values of the parameters of the probability distribution. Likewise financial volatility homogeneity is commonly assumed, where volatility is taken as investment risk which is usually measured by the variance of the rates of return. Typically the square root of the variance is used to define financial volatility, furthermore it is also often assumed that the data generating process is made of independent and identically distributed random variables. This again implies that financial volatility is measured from homogeneous time series with stationary parameters. In this dissertation, we investigate the assumptions of homogeneity of market agents and provide evidence for the case of heterogeneity in market participants' information, objectives, and expectations about the parameters of the probability distribution of prices as given by the differences in the empirical distributions corresponding to different time scales, which in this study are associated with different classes of investors, as well as demonstrate that statistical properties of the underlying data generating processes including the volatility in the rates of return are quite heterogeneous. In other words, we provide empirical evidence against the traditional views about homogeneity using non-parametric wavelet analysis on trading data, The results show heterogeneity of financial volatility at different time scales, and time-scale is one of the most important aspects in which trading behavior differs. In fact we conclude that heterogeneity as posited by the Heterogeneous Markets Hypothesis is the norm and not the exception.
Resumo:
Communication has become an essential function in our civilization. With the increasing demand for communication channels, it is now necessary to find ways to optimize the use of their bandwidth. One way to achieve this is by transforming the information before it is transmitted. This transformation can be performed by several techniques. One of the newest of these techniques is the use of wavelets. Wavelet transformation refers to the act of breaking down a signal into components called details and trends by using small waveforms that have a zero average in the time domain. After this transformation the data can be compressed by discarding the details, transmitting the trends. In the receiving end, the trends are used to reconstruct the image. In this work, the wavelet used for the transformation of an image will be selected from a library of available bases. The accuracy of the reconstruction, after the details are discarded, is dependent on the wavelets chosen from the wavelet basis library. The system developed in this thesis takes a 2-D image and decomposes it using a wavelet bank. A digital signal processor is used to achieve near real-time performance in this transformation task. A contribution of this thesis project is the development of DSP-based test bed for the future development of new real-time wavelet transformation algorithms.
Resumo:
About 10% of faults involving the electrical system occurs in power transformers. Therefore, the protection applied to the power transformers is essential to ensure the continuous operation of this device and the efficiency of the electrical system. Among the protection functions applied to power transformers, the differential protection appears as one of the main schemes, presenting reliable discrimination between internal faults and external faults or inrush currents. However, when using the low frequency components of the differential currents flowing through the transformer, the main difficulty of the conventional methods of differential protection is the delay for detection of the events. However, internal faults, external faults and other disturbances related to the transformer operation present transient and can be appropriately detected by the wavelet transform. In this paper is proposed the development of a wavelet-based differential protection for detection and identification of external faults to the transformer, internal faults, and transformer energizing by using the wavelet coefficient energy of the differential currents. The obtained results reveal the advantages of using of the wavelet transform in the differential protection compared to conventional protection, since it provides reliability and speed in detection of these events.
Resumo:
Analogous to sunspots and solar photospheric faculae, which visibility is modulated by stellar rotation, stellar active regions consist of cool spots and bright faculae caused by the magnetic field of the star. Such starspots are now well established as major tracers used to estimate the stellar rotation period, but their dynamic behavior may also be used to analyze other relevant phenomena such as the presence of magnetic activity and its cycles. To calculate the stellar rotation period, identify the presence of active regions and investigate if the star exhibits or not differential rotation, we apply two methods: a wavelet analysis and a spot model. The wavelet procedure is also applied here to study pulsation in order to identify specific signatures of this particular stellar variability for different types of pulsating variable stars. The wavelet transform has been used as a powerful tool for treating several problems in astrophysics. In this work, we show that the time-frequency analysis of stellar light curves using the wavelet transform is a practical tool for identifying rotation, magnetic activity, and pulsation signatures. We present the wavelet spectral composition and multiscale variations of the time series for four classes of stars: targets dominated by magnetic activity, stars with transiting planets, those with binary transits, and pulsating stars. We applied the Morlet wavelet (6th order), which offers high time and frequency resolution. By applying the wavelet transform to the signal, we obtain the wavelet local and global power spectra. The first is interpreted as energy distribution of the signal in time-frequency space, and the second is obtained by time integration of the local map. Since the wavelet transform is a useful mathematical tool for nonstationary signals, this technique applied to Kepler and CoRoT light curves allows us to clearly identify particular signatures for different phenomena. In particular, patterns were identified for the temporal evolution of the rotation period and other periodicity due to active regions affecting these light curves. In addition, a beat-pattern vii signature in the local wavelet map of pulsating stars over the entire time span was also detected. The second method is based on starspots detection during transits of an extrasolar planet orbiting its host star. As a planet eclipses its parent star, we can detect physical phenomena on the surface of the star. If a dark spot on the disk of the star is partially or totally eclipsed, the integrated stellar luminosity will increase slightly. By analyzing the transit light curve it is possible to infer the physical properties of starspots, such as size, intensity, position and temperature. By detecting the same spot on consecutive transits, it is possible to obtain additional information such as the stellar rotation period in the planetary transit latitude, differential rotation, and magnetic activity cycles. Transit observations of CoRoT-18 and Kepler-17 were used to implement this model.
Resumo:
The goal of the power monitoring in electrical power systems is to promote the reliablility as well as the quality of electrical power.Therefore, this dissertation proposes a new theory of power based on wavelet transform for real-time estimation of RMS voltages and currents, and some power amounts, such as active power, reactive power, apparent power, and power factor. The appropriate estimation the of RMS and power values is important for many applications, such as: design and analysis of power systems, compensation devices for improving power quality, and instruments for energy measuring. Simulation and experimental results obtained through the proposed MaximalOverlap Discrete Wavelet Transform-based method were compared with the IEEE Standard 1459-2010 and the commercial oscilloscope, respectively, presenting equivalent results. The proposed method presented good performance for compact mother wavelet, which is in accordance with real-time applications.
Resumo:
A typical electrical power system is characterized by centr alization of power gene- ration. However, with the restructuring of the electric sys tem, this topology is changing with the insertion of generators in parallel with the distri bution system (distributed gene- ration) that provides several benefits to be located near to e nergy consumers. Therefore, the integration of distributed generators, especially fro m renewable sources in the Brazi- lian system has been common every year. However, this new sys tem topology may result in new challenges in the field of the power system control, ope ration, and protection. One of the main problems related to the distributed generati on is the islanding formation, witch can result in safety risk to the people and to the power g rid. Among the several islanding protection techniques, passive techniques have low implementation cost and simplicity, requiring only voltage and current measuremen ts to detect system problems. This paper proposes a protection system based on the wavelet transform with overcur- rent and under/overvoltage functions as well as infomation of fault-induced transients in order to provide a fast detection and identification of fault s in the system. The propo- sed protection scheme was evaluated through simulation and experimental studies, with performance similar to the overcurrent and under/overvolt age conventional methods, but with the additional detection of the exact moment of the fault.
Resumo:
The great interest in nonlinear system identification is mainly due to the fact that a large amount of real systems are complex and need to have their nonlinearities considered so that their models can be successfully used in applications of control, prediction, inference, among others. This work evaluates the application of Fuzzy Wavelet Neural Networks (FWNN) to identify nonlinear dynamical systems subjected to noise and outliers. Generally, these elements cause negative effects on the identification procedure, resulting in erroneous interpretations regarding the dynamical behavior of the system. The FWNN combines in a single structure the ability to deal with uncertainties of fuzzy logic, the multiresolution characteristics of wavelet theory and learning and generalization abilities of the artificial neural networks. Usually, the learning procedure of these neural networks is realized by a gradient based method, which uses the mean squared error as its cost function. This work proposes the replacement of this traditional function by an Information Theoretic Learning similarity measure, called correntropy. With the use of this similarity measure, higher order statistics can be considered during the FWNN training process. For this reason, this measure is more suitable for non-Gaussian error distributions and makes the training less sensitive to the presence of outliers. In order to evaluate this replacement, FWNN models are obtained in two identification case studies: a real nonlinear system, consisting of a multisection tank, and a simulated system based on a model of the human knee joint. The results demonstrate that the application of correntropy as the error backpropagation algorithm cost function makes the identification procedure using FWNN models more robust to outliers. However, this is only achieved if the gaussian kernel width of correntropy is properly adjusted.
Resumo:
Discovered in 1963, 3C 273 was the second quasar identified and cataloged in the Third Cambridge Catalog for radio sources, and the first one for which emission lines were identified with a hydrogen sequence redshifted. It is the brightest quasar of the celestial sphere, the most studied, analyzed, and with a resulting abundance of data available in a vast literature. The accurate analysis of the deviations of the spectral lines of quasars provides enough information to put in evidence the variation of fundamental constants of nature and similarly the universe expansion rate. The analysis of the variability of the light curves of these bodies, and the consequent accuracy of their periodicity, is of utmost importance as it provides an efficiency of their observations, enables a greater understanding of the physical phenomena, and makes it possible to conduct spectral observations on more accurate dates (when their light curves show pronounced peaks and therefore richer spectra information). In this master’s thesis twenty eight light curves from the quasar 3C 273 are studied, covering all the electromagnetic spectrum wavebands (radio emission to gamma rays), totaling in the analysis of four light curves for each waveband. We have applied the method of Continuous Wavelet Transform using the sixth-order (!0 = 6) Morlet wavelet function, and obtained excellent results in accordance with the literature.
Resumo:
Discovered in 1963, 3C 273 was the second quasar identified and cataloged in the Third Cambridge Catalog for radio sources, and the first one for which emission lines were identified with a hydrogen sequence redshifted. It is the brightest quasar of the celestial sphere, the most studied, analyzed, and with a resulting abundance of data available in a vast literature. The accurate analysis of the deviations of the spectral lines of quasars provides enough information to put in evidence the variation of fundamental constants of nature and similarly the universe expansion rate. The analysis of the variability of the light curves of these bodies, and the consequent accuracy of their periodicity, is of utmost importance as it provides an efficiency of their observations, enables a greater understanding of the physical phenomena, and makes it possible to conduct spectral observations on more accurate dates (when their light curves show pronounced peaks and therefore richer spectra information). In this master’s thesis twenty eight light curves from the quasar 3C 273 are studied, covering all the electromagnetic spectrum wavebands (radio emission to gamma rays), totaling in the analysis of four light curves for each waveband. We have applied the method of Continuous Wavelet Transform using the sixth-order (!0 = 6) Morlet wavelet function, and obtained excellent results in accordance with the literature.
Resumo:
Binary systems are key environments to study the fundamental properties of stars. In this work, we analyze 99 binary systems identified by the CoRoT space mission. From the study of the phase diagrams of these systems, our sample is divided into three groups: those whose systems are characterized by the variability relative to the binary eclipses; those presenting strong modulations probably due to the presence of stellar spots on the surface of star; and those whose systems have variability associated with the expansion and contraction of the surface layers. For eclipsing binary stars, phase diagrams are used to estimate the classification in regard to their morphology, based on the study of equipotential surfaces. In this context, to determine the rotation period, and to identify the presence of active regions, and to investigate if the star exhibits or not differential rotation and study stellar pulsation, we apply the wavelet procedure. The wavelet transform has been used as a powerful tool in the treatment of a large number of problems in astrophysics. Through the wavelet transform, one can perform an analysis in time-frequency light curves rich in details that contribute significantly to the study of phenomena associated with the rotation, the magnetic activity and stellar pulsations. In this work, we apply Morlet wavelet (6th order), which offers high time and frequency resolution and obtain local (energy distribution of the signal) and global (time integration of local map) wavelet power spectra. Using the wavelet analysis, we identify thirteen systems with periodicities related to the rotational modulation, besides the beating pattern signature in the local wavelet map of five pulsating stars over the entire time span.
Resumo:
Binary systems are key environments to study the fundamental properties of stars. In this work, we analyze 99 binary systems identified by the CoRoT space mission. From the study of the phase diagrams of these systems, our sample is divided into three groups: those whose systems are characterized by the variability relative to the binary eclipses; those presenting strong modulations probably due to the presence of stellar spots on the surface of star; and those whose systems have variability associated with the expansion and contraction of the surface layers. For eclipsing binary stars, phase diagrams are used to estimate the classification in regard to their morphology, based on the study of equipotential surfaces. In this context, to determine the rotation period, and to identify the presence of active regions, and to investigate if the star exhibits or not differential rotation and study stellar pulsation, we apply the wavelet procedure. The wavelet transform has been used as a powerful tool in the treatment of a large number of problems in astrophysics. Through the wavelet transform, one can perform an analysis in time-frequency light curves rich in details that contribute significantly to the study of phenomena associated with the rotation, the magnetic activity and stellar pulsations. In this work, we apply Morlet wavelet (6th order), which offers high time and frequency resolution and obtain local (energy distribution of the signal) and global (time integration of local map) wavelet power spectra. Using the wavelet analysis, we identify thirteen systems with periodicities related to the rotational modulation, besides the beating pattern signature in the local wavelet map of five pulsating stars over the entire time span.
Resumo:
The increasing demand in electricity and decrease forecast, increasingly, of fossil fuel reserves, as well as increasing environmental concern in the use of these have generated a concern about the quality of electricity generation, making it well welcome new investments in generation through alternative, clean and renewable sources. Distributed generation is one of the main solutions for the independent and selfsufficient generating systems, such as the sugarcane industry. This sector has grown considerably, contributing expressively in the production of electricity to the distribution networks. Faced with this situation, one of the main objectives of this study is to propose the implementation of an algorithm to detect islanding disturbances in the electrical system, characterized by situations of under- or overvoltage. The algorithm should also commonly quantize the time that the system was operating in these conditions, to check the possible consequences that will be caused in the electric power system. In order to achieve this it used the technique of wavelet multiresolution analysis (AMR) for detecting the generated disorders. The data obtained can be processed so as to be used for a possible predictive maintenance in the protection equipment of electrical network, since they are prone to damage on prolonged operation under abnormal conditions of frequency and voltage.
Resumo:
Peer reviewed