896 resultados para Fourier transform infrared spectrometry
Application of chitosan loaded with metal oxide nano particles to remove lead present from sea water
Resumo:
Chitosan is a natural polymer obtained by deacetylation of chitin. After cellulose chitin is the second most abundant polysaccharide in nature. It is biologically safe, non-toxic, biocompatible and biodegradable polysaccharide. Chitosan loaded with zinc oxide nanoparticles have gained more attention bio sorbent because of their better stability, low toxicity, simple and mild preparation method and high sorption capacity. Chitosan loaded with zinc oxide nanoparticles have been prepared of chitosan. The physicochemical properties of nanoparticles were characterized by Fourier Transform Infrared (FTIR), Scanning Electron Microscope (SEM) Analysis. Its sorption capacity for lead and cadmium ions studied. Factors such as initial concentration of lead ions, cadmium ions sorbent amount, contact time, pH and temperature were investigated. It is found that chitosan loaded with zinc oxide nanoparticles could sorb lead and cadmium ions effectively, this sorption rate was affected significantly by initial concentration of lead and cadmium ions, sorbent amount, contact time, pH of solution. The maximum of percentage of lead sorption was 98 % with initial concentration 3 mg/l and sorbent amount 0.05 g, pH 11 in 45 min and cadmiumwas90 %with initial concentration 3mg/l and sorbent amount 0.05 g, pH 11 in45 min. Consequently chitosan loaded with zinc oxide nanoparticles demonstrated greater fixation ability for lead ions than cadmium ions.
Resumo:
Titania modified nanoparticles have been prepared by the photodeposition method employing platinum particles on the commercially available titanium dioxide (Hombikat UV 100). The properties of the prepared photocatalysts were investigated by means of the Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-visible diffuse spectrophotometry (UV-Vis). XRD was employed to determine the crystallographic phase and particle size of both bare and platinised titanium dioxide. The results indicated that the particle size was decreased with the increasing of platinum loading. AFM analysis showed that one particle consists of about 9 to 11 crystals. UV-vis absorbance analysis showed that the absorption edge shifted to longer wavelength for 0.5% Pt loading compared with bare titanium dioxide. The photocatalytic activity of pure and Pt-loaded TiO2 was investigated employing the photocatalytic oxidation and dehydrogenation of methanol. The results of the photocatalytic activity indicate that the platinized titanium dioxide samples are always more active than the corresponding bare TiO2 for both methanol oxidation and dehydrogenation processes. The loading with various platinum amounts resulted in a significant improvement of the photocatalytic activity of TiO2. This beneficial effect was attributed to an increased separation of the photogenerated electron-hole charge carriers.
Resumo:
International audience
Resumo:
The interaction of 4-nerolidylcatechol (4-NRC), a potent antioxidant agent, and 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was investigated by the solubility method using Fourier transform infrared (FTIR) methods in addition to UV-Vis, (1)H-nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. The inclusion complexes were prepared using grinding, kneading and freeze-drying methods. According to phase solubility studies in water a B(S)-type diagram was found, displaying a stoichiometry complexation of 2:1 (drug:host) and stability constant of 6494 +/- A 837 M(-1). Stoichiometry was established by the UV spectrophotometer using Job's plot method and, also confirmed by molecular modeling. Data from (1)H-NMR, and FTIR, experiments also provided formation evidence of an inclusion complex between 4-NRC and HP-beta-CD. 4-NRC complexation indeed led to higher drug solubility and stability which could probably be useful to improve its biological properties and make it available to oral administration and topical formulations.
Resumo:
Agrochemicals are amongst the contaminants most widely encountered in surface and subterranean hydrological systems. They comprise a variety of molecules, with properties that confer differing degrees of persistence and mobility in the environment, as well as different toxic, carcinogenic, mutagenic and teratogenic potentials, which can affect non-target organisms including man. In this work, alginate/chitosan nanoparticles were prepared as a carrier system for the herbicide paraquat. The preparation and physicochemical characterization of the nanoparticles was followed by evaluation of zeta potential, pH, size and polydispersion. The techniques employed included transmission electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. The formulation presented a size distribution of 635 +/- 12 nm, polydispersion of 0.518, zeta potential of -22.8 +/- 2.3 mV and association efficiency of 74.2%. There were significant differences between the release profiles of free paraquat and the herbicide associated with the alginate/chitosan nanoparticles. Tests showed that soil sorption of paraquat, either free or associated with the nanoparticles. was dependent on the quantity of organic matter present. The results presented in this work show that association of paraquat with alginate/chitosan nanoparticles alters the release profile of the herbicide, as well as its interaction with the soil, indicating that this system could be an effective means of reducing negative impacts caused by paraquat. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this study barium hexaferrite was (general formulae BaFe12O19) was synthesized by the Pechini method under different conditions of heat treatment. Precursors like barium carbonate and iron nitrate were used. These magnetic ceramic, with magnetoplumbite type structure, are widely used as permanent magnet because of its excellent magnetic properties, such as: high Curie temperature, good magnetic anisotropy, high coercivity and corrosion resistance. The samples were characterized by thermal analysis (DTA and TG), X- ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) end Vibrating sample Magnetometer (VSM). The results confirm the expected phase, which was reinforced according to our analysis. A single phase powder at relatively high temperatures with particle sizes around 100 nm was obtained. The characteristic magnetic behavior one of the phases has been noted (probably superparamagnetic material), while another phase was identified as a ferrimagnetic material. The ferrimagnetic phase showed vortex configuration with two central and slightly inclined plateaus. In general, increase of heat treatment temperature and time, directly influenced the technological properties of the samples
Resumo:
The development and study of detectors sensitive to flammable combustible and toxic gases at low cost is a crucial technology challenge to enable marketable versions to the market in general. Solid state sensors are attractive for commercial purposes by the strength and lifetime, because it isn t consumed in the reaction with the gas. In parallel, the use of synthesis techniques more viable for the applicability on an industrial scale are more attractive to produce commercial products. In this context ceramics with spinel structure were obtained by microwave-assisted combustion for application to flammable fuel gas detectors. Additionally, alternatives organic-reducers were employed to study the influence of those in the synthesis process and the differences in performance and properties of the powders obtained. The organic- reducers were characterized by Thermogravimetry (TG) and Derivative Thermogravimetry (DTG). After synthesis, the samples were heat treated and characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), analysis by specific area by BET Method and Scanning Electron Microscopy (SEM). Quantification of phases and structural parameters were carried through Rietveld method. The methodology was effective to obtain Ni-Mn mixed oxides. The fuels influenced in obtaining spinel phase and morphology of the samples, however samples calcined at 950 °C there is just the spinel phase in the material regardless of the organic-reducer. Therefore, differences in performance are expected in technological applications when sample equal in phase but with different morphologies are tested
Resumo:
The mesoporous molecular sieves of the MCM-41 and FeMCM-41 type are considered promissory as support for metals used as catalysts in oil-based materials refine processes and as adsorbents for environmental protection proposes. In this work MCM-41 and FeMCM41 were synthesized using rice husk ash - RHA as alternative to the conventional silica source. Hydrothermal synthesis was the method chosen to prepare the materials. Pre-defined synthesis parameters were 100°C for 168 hours, later the precursor was calcinated at 550°C for 2 hours under nitrogen and air flow. The sieves containing different proportions of iron were produced by two routes: introduction of iron salt direct synthesis; and a modification post synthesis consisting in iron salt 1 % and 5% impregnation in the material followed by thermal decomposition. The molecular sieves were characterized by X ray diffraction XRD, Fourier transform infrared spectroscopy FT-IR, X ray fluorescence spectroscopy XFR, scanning electronic microscopy SEM, specific surface area using the BET method, Termogravimetry TG. The kinetic model of Flynn Wall was used with the aim of determining the apparent activation energy of the surfactant remove (CTMABr) in the MCM- 41 porous. The analysis made possible the morphology characterization, identifying the presence of hexagonal structure typical for mesoporous materials, as well as observation of the MCM41 and iron of characteristic bands.
Resumo:
Con la evaluación de la producción de pintura a partir de los residuos de poliestireno expandido (EPS) utilizando un solvente amigable con el ambiente, se pretende dar uso post industrial a los desechos de poliestireno expandido que cada vez se acumulan más en los rellenos sanitarios, lo que genera un descontento debido a su volumen -- Además de darle un trato más amigable a la fabricación de pintura buscando un solvente que no resulte tan tóxico para el trato humano y para el ambiente -- El desarrollo del proyecto se lleva a cabo planteando una metodología de investigación que sugiere inicialmente pruebas de caracterización al residuo de poliestireno expandido, que permiten saber características propias del material -- Luego de esto, se realiza un diseño de experimentos multifactorial con dos factores y tres niveles, donde se analiza el efecto de la temperatura en la fase de mezclado y la relación que tiene la concentración de poliestireno expandido como vehículo en la elaboración de pintura -- En el diseño se evalúan cuatro variables de respuesta: adhesión, viscosidad, tiempo de secado y poder de cubrimiento, comparando luego estas mismas propiedades con las realizadas en una pintura comercial -- El estudio muestra un alto grado de influencia de la concentración de poliestireno expandido sobre las propiedades de la pintura obtenida, mejorando cada una de ellas a medida que se aumenta la cantidad de poliestireno expandido -- Se observó también que la temperatura influyó en el tiempo de secado, es decir a mayor temperatura en la fase de mezclado mayor fue el tiempo que se demoró la pintura en secar -- Por último, al comparar el producto obtenido con uno comercial, se encuentra que el producto obtenido tiene menor tiempo de secado, una adhesión similar, posee mayor poder de cobertura y una viscosidad más alta, además de ser una pintura no toxica y amigable con el ambiente
Resumo:
Generally, cellulose ethers improves mortar properties such as water retention, workability and setting time, along with adherence to the substrate. However, a major disadvantage of the addition of cellulose ethers in mortars is the delay in hydration of the cement. In this paper a cellulose phosphate (Cp) was synthesized water soluble and has been evaluated the effect of their incorporation into mortar based on Portland cement. Cellulose phosphate obtained was characterized by spectrophotometry Fourier transform infrared (FTIR), X-ray diffraction (XRD), elemental analysis and scanning electron microscopy (SEM). Mortar compositions were formulated with varying phosphorus content in cellulose and cellulose phosphate concentrations, when used in partial or total replacement of the commercial additive based hydroxyethyl methyl cellulose (HEMC). The mortars formulated with additives were prepared and characterized by: testing in the fresh state (consistency index, water retention, bulk density and air content incorporated) and in the hardened state (absorption by capillarity, density, flexural and compression strength). In mixtures the proportion of sand:cement of 1:5 (v / v) and factor a / c = 1.31 and water were held constant. Overall, the results showed that the celluloses phosphates employed in mortars added acted significantly when partially substituting the commercial additive. With regard to consistency index, water retention and bulk density in the fresh state and absorption by capillarity and bulk density apparent in the hardened state, showed no appreciable differences as compared to the commercial additive. The incorporated air content in the fresh state reduced markedly, but did not affect other properties. The mortars with cellulose phosphate, partially replacing the commercial additive showed an improvement of the properties of flexural strength and compressive strength
Resumo:
The present work deals with the synthesis of materials with perovskite structure with the intention of using them as cathodes in fuel cells SOFC type. The perovskite type materials were obtained by chemical synthesis method, using gelatin as the substituent of citric acid and ethylene glycol, and polymerizing acting as chelating agent. The materials were characterized by X-ray diffraction, thermal analysis, spectroscopy Fourier transform infrared, scanning electron microscopy with EDS, surface area determination by the BET method and Term Reduction Program, TPR. The compounds were also characterized by electrical conductivity for the purpose of observing the possible application of this material as a cathode for fuel cells, solid oxide SOFC. The method using gelatin and polymerizing chelating agent for the preparation of materials with the perovskite structure allows the synthesis of crystalline materials and homogeneous. The results demonstrate that the route adopted to obtain materials were effective. The distorted perovskite structure have obtained the type orthorhombic and rhombohedral; important for fuel cell cathodes. The presentation material properties required of a candidate cathode materials for fuel cells. XRD analysis contacted by the distortion of the structures of the synthesized materials. The analyzes show that the electrical conductivity obtained materials have the potential to act as a cell to the cathode of solid oxide fuel, allowing to infer an order of values for the electrical conductivities of perovskites where LaFeO3 < LaNiO3 < LaNi0,5Fe0,5O3. It can be concluded that the activity of these perovskites is due to the presence of structural defects generated that depend on the method of synthesis and the subsequent heat treatment
Resumo:
In recent decades have seen a sharp growth in the study area of nanoscience and nanotechnology and is included in this area, the study of nanocomposites with self-cleaning properties. Since titanium dioxide (TiO2) has high photocatalytic activity and also antimicrobial, self-cleaning surfaces in your application has been explored. In this study a comparison was made between two synthesis routes to obtain TiO2 nanoparticles by hydrothermal method assisted by microwave. And after analysis of XRD and SEM was considered the best material for use in nanocomposites. It was deposited nanocomposite film of poly (dimethyl siloxane) (PDMS) with 0.5, 1, 1.5 and 2% by weight of nanoparticles of titanium dioxide (TiO2) by the spraying method. The nanocomposite was diluted with hexane and the suspension was deposited onto glass substrate, followed by curing in an oven with forced air circulation. The photocatalytic activity of the nanocomposite impregnated with methylene blue was evaluated by UV- vis spectroscopy from the intensity variation of absorption main peak at 660nm with time of exposure to the UV chamber. Changes in the contact angle and microhardness were analyzed before and after UV aging test. The effect of ultraviolet radiation on the chemical structure of the PDMS matrix was evaluated by spectrophotometry Fourier transform infrared (FTIR).The results indicated that the addition of TiO2 nanoparticles in the coating PDMS gave high photocatalytic activity in the decomposition of methylene blue, an important characteristic for the development of self-cleaning coatings
Resumo:
With the advances in medicine, life expectancy of the world population has grown considerably in recent decades. Studies have been performed in order to maintain the quality of life through the development of new drugs and new surgical procedures. Biomaterials is an example of the researches to improve quality of life, and its use goes from the reconstruction of tissues and organs affected by diseases or other types of failure, to use in drug delivery system able to prolong the drug in the body and increase its bioavailability. Biopolymers are a class of biomaterials widely targeted by researchers since they have ideal properties for biomedical applications, such as high biocompatibility and biodegradability. Poly (lactic acid) (PLA) is a biopolymer used as a biomaterial and its monomer, lactic acid, is eliminated by the Krebs Cycle (citric acid cycle). It is possible to synthesize PLA through various synthesis routes, however, the direct polycondensation is cheaper due the use of few steps of polymerization. In this work we used experimental design (DOE) to produce PLAs with different molecular weight from the direct polycondensation of lactic acid, with characteristics suitable for use in drug delivery system (DDS). Through the experimental design it was noted that the time of esterification, in the direct polycondensation, is the most important stage to obtain a higher molecular weight. The Fourier Transform Infrared (FTIR) spectrograms obtained were equivalent to the PLAs available in the literature. Results of Differential Scanning Calorimetry (DSC) showed that all PLAs produced are semicrystalline with glass transition temperatures (Tgs) ranging between 36 - 48 °C, and melting temperatures (Tm) ranging from 117 to 130 °C. The PLAs molecular weight characterized from Size Exclusion Chromatography (SEC), varied from 1000 to 11,000 g/mol. PLAs obtained showed a fibrous morphology characterized by Scanning Electron Microscopy (SEM)
Resumo:
The environmental impact caused by the disposal of non-biodegradable polymer packaging on the environment, as well as the high price and scarcity of oil, caused increase of searches in the area of biodegradable polymers from renewable resources were developed. The poly (lactic acid) (PLA) is a promising polymer in the market, with a large availability of raw material for the production of its monomer, as well as good processability. The aimed of this study was synthesis PLA by direct polycondesation of lactic acid, using the tool of experimental design (DOE) (central composite rotatable design (CCRD)) to optimize the conditions of synthesis. The polymer obtained was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), viscosimetric analysis, differential scanning calorimeter (DSC) and size exclusion chromatography (SEC). The results confirmed the formation of a poly (lactic acid) semicrystalline in the syntheses performed. Through the central composite rotatable design was possible to optimize the crystallization temperature (Tc) and crystallinity degree (Xc). The crystallization temperature maximum was found for percentage of catalyst around the central point (0,3 (%W)) and values of time ranging from the central point (6h) to the upper level (+1) (8h). The crystallization temperature maximum was found for the total synthesis time of 4h (-1) and percentage of catalyst 0,1(W%) (-1). The results of size exclusion chromatography (SEC) showed higher molecular weights to 0,3 (W%) percent of catalyst and total time synthesis of 3,2h
Resumo:
El aguacate (Persea americana Miller) es una conocida fruta arb´orea con un alto contenido nutricional que crece en varias partes del mundo. El presente estudio compara los espectros del UV-Vis y del espectr´ometro infrarrojo con transformada de Fourier (FTIR) de la fruta y de la hoja de aguacate (c´ascara, pulpa y aceite) cultivado en Ecuador y posteriormente eval´ua su actividad antioxidante empleando el 1,1-difenil-2-picrilhidrazil (DPPH•). El estudio de los espctros UV-Vis y FTIR revel´o que el aguacate tiene predominantemente flavonoides. Entre la hoja y el fruto del aguacate, se comprob´o mediante el ensayo DPPH• (captura de radicales libres), que la hoja tuvo una mayor actividad antioxidante, la que oscila entre 84,46% y 80,12%, con valores de 32.60-32.73 μg equivalentes de ´acido g´alico por mL. Se demostr´o que el orden de la actividad antioxidante de los extractos es: hoja de aguacate > c´ascara > aceite > pulpa. La actividad antioxidante tuvo una correlaci´on positiva con el contenido total de flavonoides y estos extractos de plantas (especialmente de las hojas del aguacate) son ´utiles para el desarrollo de futuros productos antioxidantes.