960 resultados para Finite element method, Finite volume method, Fractional calculous, Space-fractional Boussinesq equation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Floating zone crystal growth in microgravity environment is investigated numerically by a finite element method for semiconductor growth processing, which involves thermocapillary convection, phase change convection, thermal diffusion and solutal diffusion. The configurations of phase change interfaces and distributions of velocity, temperature and concentration fields are analyzed for typical conditions of pulling rates and segregation coefficients. The influence of phase change convection on the distribution of concentration is studied in detail. The results show that the thermocapillary convection plays an important role in mixing up the melt with dopant. The deformations of phase change interfaces by thermal convection-diffusion and pulling rods make larger variation of concentration field in comparison with the case of plane interfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vibration analysis of an elastic container with partially filled fluid was investigated in this paper. The container is made of a thin cylinder and two circular plates at the ends. The axis of the cylinder is in the horizontal direction. It is difficult to solve this problem because the complex system is not axially symmetric. The equations of motion for this system were derived. An incompressible and ideal fluid model is used in the present work. Solutions of the equations were obtained by the generalized variational method. The solution was expressed in a series of normalized generalized Fourier's functions. This series converged rapidly, and so its approximate solution was obtained with high precision. The agreement of the calculated values with the experimental result is good. It should be mentioned that with our method, the computer time is less than that with the finite-element method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is suggested that the oscillation of thermocapillary convection may be excited by the buoyancy instability. By means of numerical simulation of the finite-element method, the temperature distributions in the liquid bridge are qualitatively analyzed. The temperature gradient in a certain flow region of liquid bridge may turn to be parallel to the direction of gravity when the temperature difference △T between two boundary rods of liquid bridge is larger than the critical value. The buoyancy instability may be excited, and then the thermocapillary oscillatory convection appears, as the temperature difference increases further. The distribution of the critical Marangoni number in the micro-gravity environment is derived from the data on the ground experiments. The results show that the onset of thermocapillary oscillatory convection is delayed in the case of smaller typical scale of liquid bridge and lower gravity environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prediction of cracking direction in composite materials is of significance to the design of composite structures. This paper presents several methods for predicting the cracking direction in the double grooved tension-shear specimen which gives mixed-mode cracking. Five different criteria are used in this analysis: two of them have been used by other investigators and the others are proposed by the present authors. The strain energy density criterion proposed by G.C. Sih is modified to take account of the influence of the anisotropy of the strength on the direction of crack. The two failure criteria of Tsai-Hill and Norris are extended to predict the crack orientation. The stress distributions in the near-notch zone are calculated by using the 8-node quadrilateral isoparametric finite element method. The predictions of all the criteria except one are in good agreement with the experimental measurement. In addition, on the basis of the FEM results, the size of the zone in which the singular term is dominant is estimated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

采用ANSYS有限元分析软件对永乐大钟及其悬挂支撑系统建立了有限元模型,进行了撞钟过程有限元瞬态分析及动力强度校核。通过有限元计算,获得了大钟各局部考察对象及整体的应力、位移分布情况和各部分的动力响应和对强度的影响,为合理撞钟和加固提供了科学依据与技术指导。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

研讨有限体积(FV)方法重构近似高精度的作用问题.FV方法中积分近似采用中点规则为二阶精度时,重构近似高精度(精度高于二阶)的意义和作用是一个有争议的问题.利用数值摄动技术"。0构造了标量输运方程的积分近似为二阶精度、重构近似为任意阶精度的迎风型和中心型摄动有限体积(PFV)格式.迎风 PFV格式无条件满足对流有界准则(CBC),中心型PFV格式为正型格式,两者均不会产生数值振荡解.利用 PFV格式求解模型方程的数值结果表明:与一阶迎风和二阶中心格式相比,PFV格式精度高、对解的问断分辨率高、稳定性好、雷诺数的适用范围大,数值地"证实"重构近似高精度和PFV格式的实际意义和好处.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

根据NS方程组的一阶迎风和二阶中心有限体积(UFV和CFV)格式,导出NS方程组迎风和中心摄动有限体积(UPFV和CPFV)格式.该格式通过把控制体界面质量通量摄动展开成网格间距的幂级数,并由守恒方程本身求得幂级数系数而获得.迎风和中心摄动有限体积格式使用了与一阶迎风和二阶中心格式相同的基点数和相同的表达形式,宜于计算机编程.顶盖驱动方腔流和驻点流标量输运的数值实验证明,迎风PFV格式比一阶UFV、二阶CFV格式有更高的精度,更高的分辨率.尤其是良好的鲁棒特性.对顶盖驱动方腔流,在Re数从102到104范围内,亚松弛系数可在0.3~0.8任取,收敛性能良好.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth process of 2-inch silicon carbide (SiC) single crystals by the physical vapor transport method (or modified Lely method) has been modeled and simulated. The comprehensive process model incorporates the calculations of radio frequency (RF) induction heating, heat and mass transfer and growth kinetics. The transport equations for electromagnetic field, heat transfer, and species transport are solved using a finite volume-based numerical scheme called MASTRAPP (Multizone Adaptive Scheme for Transport and Phase Change Process). Temperature distribution for a 2-inch growth system is calculated, and the effects of induction heating frequency and current on the temperature distribution and growth rate are investigated. The predicted results have been compared with the experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ammonothermal growth of GaN crystals with a retrograde solubility has been modeled and simulated here using fluid dynamics, thermodynamics and heat transfer models. The nutrient is considered as a porous media bed and the flow in the porous charge is simulated using the Darcy-Brinkman-Forchheimer model. The resulting governing equations are solved using the finite volume method. For the case of retrograde solubility, the charge is put above the baffle. The temperature difference between the dissolving zone and growth zone is found smaller than that applied on the sidewall of autoclave. The baffle opening has a strong effect on the nutrient transport and supersaturation of GaN species in the growth zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physical vapor transport (PVT) method is being widely used to grow large-size single SiC crystals. The growth process is associated with heat and mass transport in the growth chamber, chemical reactions among multiple species as well as phase change at the crystal/gas interface. The current paper aims at studying and verifying the transport mechanism and growth kinetics model by demonstrating the flow field and species concentration distribution in the growth system. We have developed a coupled model, which takes into account the mass transport and growth kinetics. Numerical simulation is carried out by employing an in-house developed software based on finite volume method. The results calculated are in good agreement with the experimental observation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GaN can be used to fabricate blue/green/UV LEDs and high temperature, high power electronic devices. Ideal substrates are needed for high quality III-nitride epitaxy, which is an essential step for the manufacture of LEDs. GaN substrates are ideal to be lattice matched and isomorphic to nitride-based films. Bulk single crystals of GaN can be grown from supercritical fluids using the ammonothermal method, which utilizes ammonia as fluid rather than water as in the hydrothermal process. In this process, a mineralizer such as amide, imide or azide is used to attack a bulk nitride feedstock at temperatures from 200 - 500癈 and pressures from 1 - 4 kbar. Baffle design is essential for successful growth of GaN crystals. Baffle is used to separate the dissolving zone from the growth zone, and to maintain a temperature difference between the two zones. For solubility curve with a positive coefficient with respect to temperature, the growth zone is maintained at a lower temperature than that in the dissolving zone, thus the nutrient becomes supersaturated in the growth zone. The baffle opening is used to control the mixing of nutrients in the two zones, thus the transfer of nutrient from the lower part to the upper part. Ammonothermal systems have been modeled here using fluid dynamics, thermodynamics and heat transfer models. The nutrient is considered as a porous media bed and the flow is simulated using the Darcy-Brinkman-Forchheimer model. The resulting governing equations are solved using the finite volume method. We investigated the effects of baffle opening and position on the transport phenomena of nutrient from dissolving zone to the growth zone. Simulation data have been compared qualitatively with experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, torsion fracture behavior of drawn pearlitic steel wires with different heat treatments was investigated. Samples with different heat treatments was investigated. Samples with different heat treatment conditions were subjected to torsion and tensile tests. The shear strain along the torsion sample after fracture was measured. Fracture surface of wires was examined by Scanning Electron Microscopy. In addition, the method of Differential Scanning Calorimetry was used to characterize the thermodynamic process in the heat treatment. A numerical simulation via finite element method on temperature field evolution for the wire during heat treatment process was performed. The results show that both strain aging and recovery process occur in the material within the temperature range between room temperature and 435 degrees C. It was shown that the ductility measured by the number of twists drops at short heating times and recovers after further heating in the lead bath of 435 degrees C. On the other hand, the strenght of the wire increases at short heating times and decreases after further heating. The microstructure inhomogeneity due to short period of heat treatment, coupled with the gradient characteristics of shear deformation during torsion results in localized shear deformation of the wire. In this situation, shear cracks nucleate between lamella and the wire breaks with low number of twists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flow around moving boundary is ubiquitous in engineering applications. To increse the efficienly of the algorithm to handle moving boundaries is still a major challenge in Computational Fluid Dynamics (CFD). The Chimera grid method is one type of method to handle moving boundaries. A concept of domain de-composition has been proposed in this paper. In this method, sub-domains are meshed independently and governing equations are also solved separately on them. The Chimera grid method was originally used only on structured (curvilinear) meshes. However, in a problem which involves both moving boundary and complex geometry, the number of sub-domains required in a traditional (structured) Chimera method becomes fairly large. Thus the time required in the interior boundary locating, link-building and data exchanging also increases. The use of unstructured Chimera grid can reduce the time consumption significantly by the reduction of domain(block) number. Generally speaking, unstructured Chimera grid method has not been developed. In this paper, a well-known pressure correction scheme - SIMPLEC is modified and implemented on unstructured Chimera mesh. A new interpolation scheme regarding the pressure correction is proposed to prevent the possible decoupling of pressure. A moving-mesh finite volume approach is implemented in an inertial reference frame. This approach is then used to compute incompressible flow around a rotating circular and elliptic cylinder. These numerical examples demonstrate the capability of the proposed scheme in handling moving boundaries. The numerical results are in good agreement with other experimental and computational data in literature. The method proposed in this paper can be efficiently applied to more challenge cases such as free-falling objects or heavy particles in fluid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

本文利用线性压电学理论,编制了线性压电材料四结点等参有限元程序,进行了校核,并对PZT-5A材料压电智能元件和压电材料标准断裂试进行了计算,计算包括:①采用实际工程应用的压电智能元件尺寸,计算了元件的压电响应;并针对元件内部电极尖端区域容易引起破坏的现象,计算了该区域的奇异应力、应变场及电场。②计算了加力和加电两种情况下压电材料标准断裂试件应力强度因子影响系数F_I和电位移强度因子影响系数F_D。裂纹面边界条件采用D-P条件,试件包括紧凑拉伸标准试件和三点弯曲标准试件。③应用Lagrange乘子法将Parton裂纹边界条件加于有限元程序中,计算了上述两种标准断裂试件的F_I和F_D,计算结果与采用D-P裂纹边界条件的计算结果有很大差异。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

浸入边界法(Immersed Boundary Method)是计算流体力学中求解具有复杂、移动边界流动问题的一类有效途径,该方法在笛卡尔坐标系上离散求解流体控制方程,并通过在控制方程中添加相应源相来代表浸入边界。尽管浸入边界法借助其简单、高效的显著特点在计算流体力学应用中显示出极强的生命力,特别是针对复杂的实际流动及动边界流动问题有着无可比拟的优势,但仍有许多问题需要进一步的研究。 本论文基于浸入边界方法及多矩VSIAM3(Volume/Surface Integrated Average Multi-Moment Method)格式提出了一种不可压缩流体求解数值格式。不可压N-S方程使用VSIAM3格式进行法进行离散,引入浸入边界法处理复杂、移动流动边界条件,使用虚拟网格方法计算动量方程修正项,同时还考虑了对连续方程的修正。VSIAM3格式是一种基于多矩的有限体积法,在方程的离散中总是使用两种或两种以上的矩,如:VIA(Volume Integrated Average)和SIA(Surface Integrated Average)。而不同的矩在求解过程中依据不同形式的控制方程使用不同的离散方法进行更新。VSIAM3格式更多的局地自由度及同时使用交错网格和同位网格的特点使浸入边界法的实施更加便利、高效。研究中,浸入边界法不仅应用于处理动力边界条件,同样可以处理热动力边界条件。 研究中对大量经典算例进行了数值实验,包括一维线性初始问题、方腔流问题、二维绕静止及振荡圆柱流动、三维绕球流动及热对流问题等。数值结果同实验值及其它计算结果保持一致,该算法可准确、高效处理具有复杂、移动边界及存在热对流的不可压流动问题,为实际应用打下了基础。