991 resultados para Fan-Complete Space
Resumo:
An attempt is made to provide a theoretical explanation of the effect of the positive column on the voltage-current characteristic of a glow or an arc discharge. Such theories have been developed before, and all are based on balancing the production and loss of charged particles and accounting for the energy supplied to the plasma by the applied electric field. Differences among the theories arise from the approximations and omissions made in selecting processes that affect the particle and energy balances. This work is primarily concerned with the deviation from the ambipolar description of the positive column caused by space charge, electron-ion volume recombination, and temperature inhomogeneities.
The presentation is divided into three parts, the first of which involved the derivation of the final macroscopic equations from kinetic theory. The final equations are obtained by taking the first three moments of the Boltzmann equation for each of the three species in the plasma. Although the method used and the equations obtained are not novel, the derivation is carried out in detail in order to appraise the validity of numerous approximations and to justify the use of data from other sources. The equations are applied to a molecular hydrogen discharge contained between parallel walls. The applied electric field is parallel to the walls, and the dependent variables—electron and ion flux to the walls, electron and ion densities, transverse electric field, and gas temperature—vary only in the direction perpendicular to the walls. The mathematical description is given by a sixth-order nonlinear two-point boundary value problem which contains the applied field as a parameter. The amount of neutral gas and its temperature at the walls are held fixed, and the relation between the applied field and the electron density at the center of the discharge is obtained in the process of solving the problem. This relation corresponds to that between current and voltage and is used to interpret the effect of space charge, recombination, and temperature inhomogeneities on the voltage-current characteristic of the discharge.
The complete solution of the equations is impractical both numerically and analytically, and in Part II the gas temperature is assumed uniform so as to focus on the combined effects of space charge and recombination. The terms representing these effects are treated as perturbations to equations that would otherwise describe the ambipolar situation. However, the term representing space charge is not negligible in a thin boundary layer or sheath near the walls, and consequently the perturbation problem is singular. Separate solutions must be obtained in the sheath and in the main region of the discharge, and the relation between the electron density and the applied field is not determined until these solutions are matched.
In Part III the electron and ion densities are assumed equal, and the complicated space-charge calculation is thereby replaced by the ambipolar description. Recombination and temperature inhomogeneities are both important at high values of the electron density. However, the formulation of the problem permits a comparison of the relative effects, and temperature inhomogeneities are shown to be important at lower values of the electron density than recombination. The equations are solved by a direct numerical integration and by treating the term representing temperature inhomogeneities as a perturbation.
The conclusions reached in the study are primarily concerned with the association of the relation between electron density and axial field with the voltage-current characteristic. It is known that the effect of space charge can account for the subnormal glow discharge and that the normal glow corresponds to a close approach to an ambipolar situation. The effect of temperature inhomogeneities helps explain the decreasing characteristic of the arc, and the effect of recombination is not expected to appear except at very high electron densities.
Resumo:
In this thesis an extensive study is made of the set P of all paranormal operators in B(H), the set of all bounded endomorphisms on the complex Hilbert space H. T ϵ B(H) is paranormal if for each z contained in the resolvent set of T, d(z, σ(T))//(T-zI)-1 = 1 where d(z, σ(T)) is the distance from z to σ(T), the spectrum of T. P contains the set N of normal operators and P contains the set of hyponormal operators. However, P is contained in L, the set of all T ϵ B(H) such that the convex hull of the spectrum of T is equal to the closure of the numerical range of T. Thus, N≤P≤L.
If the uniform operator (norm) topology is placed on B(H), then the relative topological properties of N, P, L can be discussed. In Section IV, it is shown that: 1) N P and L are arc-wise connected and closed, 2) N, P, and L are nowhere dense subsets of B(H) when dim H ≥ 2, 3) N = P when dimH ˂ ∞ , 4) N is a nowhere dense subset of P when dimH ˂ ∞ , 5) P is not a nowhere dense subset of L when dimH ˂ ∞ , and 6) it is not known if P is a nowhere dense subset of L when dimH ˂ ∞.
The spectral properties of paranormal operators are of current interest in the literature. Putnam [22, 23] has shown that certain points on the boundary of the spectrum of a paranormal operator are either normal eigenvalues or normal approximate eigenvalues. Stampfli [26] has shown that a hyponormal operator with countable spectrum is normal. However, in Theorem 3.3, it is shown that a paranormal operator T with countable spectrum can be written as the direct sum, N ⊕ A, of a normal operator N with σ(N) = σ(T) and of an operator A with σ(A) a subset of the derived set of σ(T). It is then shown that A need not be normal. If we restrict the countable spectrum of T ϵ P to lie on a C2-smooth rectifiable Jordan curve Go, then T must be normal [see Theorem 3.5 and its Corollary]. If T is a scalar paranormal operator with countable spectrum, then in order to conclude that T is normal the condition of σ(T) ≤ Go can be relaxed [see Theorem 3.6]. In Theorem 3.7 it is then shown that the above result is not true when T is not assumed to be scalar. It was then conjectured that if T ϵ P with σ(T) ≤ Go, then T is normal. The proof of Theorem 3.5 relies heavily on the assumption that T has countable spectrum and cannot be generalized. However, the corollary to Theorem 3.9 states that if T ϵ P with σ(T) ≤ Go, then T has a non-trivial lattice of invariant subspaces. After the completion of most of the work on this thesis, Stampfli [30, 31] published a proof that a paranormal operator T with σ(T) ≤ Go is normal. His proof uses some rather deep results concerning numerical ranges whereas the proof of Theorem 3.5 uses relatively elementary methods.
Resumo:
We explore the use of the Radon-Wigner transform, which is associated with the fractional Fourier transform of the pupil function, for determining the point spread function (PSF) of an incoherant defocused optical system. Then we introduce these phase-space tools to analyse the wavefront coding imaging system. It is shown that the shape of the PSF for such a system is highly invarient to the defocous-related aberrations except for a lateral shift. The optical transfer function of this system is also investigated briefly from a new understanding of ambiguity function.
Resumo:
Let L be the algebra of all linear transformations on an n-dimensional vector space V over a field F and let A, B, ƐL. Let Ai+1 = AiB - BAi, i = 0, 1, 2,…, with A = Ao. Let fk (A, B; σ) = A2K+1 - σ1A2K-1 + σ2A2K-3 -… +(-1)KσKA1 where σ = (σ1, σ2,…, σK), σi belong to F and K = k(k-1)/2. Taussky and Wielandt [Proc. Amer. Math. Soc., 13(1962), 732-735] showed that fn(A, B; σ) = 0 if σi is the ith elementary symmetric function of (β4- βs)2, 1 ≤ r ˂ s ≤ n, i = 1, 2, …, N, with N = n(n-1)/2, where β4 are the characteristic roots of B. In this thesis we discuss relations involving fk(X, Y; σ) where X, Y Ɛ L and 1 ≤ k ˂ n. We show: 1. If F is infinite and if for each X Ɛ L there exists σ so that fk(A, X; σ) = 0 where 1 ≤ k ˂ n, then A is a scalar transformation. 2. If F is algebraically closed, a necessary and sufficient condition that there exists a basis of V with respect to which the matrices of A and B are both in block upper triangular form, where the blocks on the diagonals are either one- or two-dimensional, is that certain products X1, X2…Xr belong to the radical of the algebra generated by A and B over F, where Xi has the form f2(A, P(A,B); σ), for all polynomials P(x, y). We partially generalize this to the case where the blocks have dimensions ≤ k. 3. If A and B generate L, if the characteristic of F does not divide n and if there exists σ so that fk(A, B; σ) = 0, for some k with 1 ≤ k ˂ n, then the characteristic roots of B belong to the splitting field of gk(w; σ) = w2K+1 - σ1w2K-1 + σ2w2K-3 - …. +(-1)K σKw over F. We use this result to prove a theorem involving a generalized form of property L [cf. Motzkin and Taussky, Trans. Amer. Math. Soc., 73(1952), 108-114]. 4. Also we give mild generalizations of results of McCoy [Amer. Math. Soc. Bull., 42(1936), 592-600] and Drazin [Proc. London Math. Soc., 1(1951), 222-231].
Resumo:
In 1964 A. W. Goldie [1] posed the problem of determining all rings with identity and minimal condition on left ideals which are faithfully represented on the right side of their left socle. Goldie showed that such a ring which is indecomposable and in which the left and right principal indecomposable ideals have, respectively, unique left and unique right composition series is a complete blocked triangular matrix ring over a skewfield. The general problem suggested above is very difficult. We obtain results under certain natural restrictions which are much weaker than the restrictive assumptions made by Goldie.
We characterize those rings in which the principal indecomposable left ideals each contain a unique minimal left ideal (Theorem (4.2)). It is sufficient to handle indecomposable rings (Lemma (1.4)). Such a ring is also a blocked triangular matrix ring. There exist r positive integers K1,..., Kr such that the i,jth block of a typical matrix is a Ki x Kj matrix with arbitrary entries in a subgroup Dij of the additive group of a fixed skewfield D. Each Dii is a sub-skewfield of D and Dri = D for all i. Conversely, every matrix ring which has this form is indecomposable, faithfully represented on the right side of its left socle, and possesses the property that every principal indecomposable left ideal contains a unique minimal left ideal.
The principal indecomposable left ideals may have unique composition series even though the ring does not have minimal condition on right ideals. We characterize this situation by defining a partial ordering ρ on {i, 2,...,r} where we set iρj if Dij ≠ 0. Every principal indecomposable left ideal has a unique composition series if and only if the diagram of ρ is an inverted tree and every Dij is a one-dimensional left vector space over Dii (Theorem (5.4)).
We show (Theorem (2.2)) that every ring A of the type we are studying is a unique subdirect sum of less complex rings A1,...,As of the same type. Namely, each Ai has only one isomorphism class of minimal left ideals and the minimal left ideals of different Ai are non-isomorphic as left A-modules. We give (Theorem (2.1)) necessary and sufficient conditions for a ring which is a subdirect sum of rings Ai having these properties to be faithfully represented on the right side of its left socle. We show ((4.F), p. 42) that up to technical trivia the rings Ai are matrix rings of the form
[...]. Each Qj comes from the faithful irreducible matrix representation of a certain skewfield over a fixed skewfield D. The bottom row is filled in by arbitrary elements of D.
In Part V we construct an interesting class of rings faithfully represented on their left socle from a given partial ordering on a finite set, given skewfields, and given additive groups. This class of rings contains the ones in which every principal indecomposable left ideal has a unique minimal left ideal. We identify the uniquely determined subdirect summands mentioned above in terms of the given partial ordering (Proposition (5.2)). We conjecture that this technique serves to construct all the rings which are a unique subdirect sum of rings each having the property that every principal-indecomposable left ideal contains a unique minimal left ideal.
Resumo:
The re-ignition characteristics (variation of re-ignition voltage with time after current zero) of short alternating current arcs between plane brass electrodes in air were studied by observing the average re-ignition voltages on the screen of a cathode-ray oscilloscope and controlling the rates of rise of voltage by varying the shunting capacitance and hence the natural period of oscillation of the reactors used to limit the current. The shape of these characteristics and the effects on them of varying the electrode separation, air pressure, and current strength were determined.
The results show that short arc spaces recover dielectric strength in two distinct stages. The first stage agrees in shape and magnitude with a previously developed theory that all voltage is concentrated across a partially deionized space charge layer which increases its breakdown voltage with diminishing density of ionization in the field-tree space. The second stage appears to follow complete deionization by the electric field due to displacement of the field-free region by the space charge layer, its magnitude and shape appearing to be due simply to increase in gas density due to cooling. Temperatures calculated from this second stage and ion densities determined from the first stage by means of the space charge equation and an extrapolation of the temperature curve are consistent with recent measurements of arc value by other methods. Analysis or the decrease with time of the apparent ion density shows that diffusion alone is adequate to explain the results and that volume recombination is not. The effects on the characteristics of variations in the parameters investigated are found to be in accord with previous results and with the theory if deionization mainly by diffusion be assumed.
Resumo:
Biomolecular circuit engineering is critical for implementing complex functions in vivo, and is a baseline method in the synthetic biology space. However, current methods for conducting biomolecular circuit engineering are time-consuming and tedious. A complete design-build-test cycle typically takes weeks' to months' time due to the lack of an intermediary between design ex vivo and testing in vivo. In this work, we explore the development and application of a "biomolecular breadboard" composed of an in-vitro transcription-translation (TX-TL) lysate to rapidly speed up the engineering design-build-test cycle. We first developed protocols for creating and using lysates for conducting biological circuit design. By doing so we simplified the existing technology to an affordable ($0.03/uL) and easy to use three-tube reagent system. We then developed tools to accelerate circuit design by allowing for linear DNA use in lieu of plasmid DNA, and by utilizing principles of modular assembly. This allowed the design-build-test cycle to be reduced to under a business day. We then characterized protein degradation dynamics in the breadboard to aid to implementing complex circuits. Finally, we demonstrated that the breadboard could be applied to engineer complex synthetic circuits in vitro and in vivo. Specifically, we utilized our understanding of linear DNA prototyping, modular assembly, and protein degradation dynamics to characterize the repressilator oscillator and to prototype novel three- and five-node negative feedback oscillators both in vitro and in vivo. We therefore believe the biomolecular breadboard has wide application for acting as an intermediary for biological circuit engineering.
Resumo:
A Riesz space with a Hausdorff, locally convex topology determined by Riesz seminorms is called a locally convex Riesz space. A sequence {xn} in a locally convex Riesz space L is said to converge locally to x ϵ L if for some topologically bounded set B and every real r ˃ 0 there exists N (r) and n ≥ N (r) implies x – xn ϵ rb. Local Cauchy sequences are defined analogously, and L is said to be locally complete if every local Cauchy sequence converges locally. Then L is locally complete if and only if every monotone local Cauchy sequence has a least upper bound. This is a somewhat more general form of the completeness criterion for Riesz – normed Riesz spaces given by Luxemburg and Zaanen. Locally complete, bound, locally convex Riesz spaces are barrelled. If the space is metrizable, local completeness and topological completeness are equivalent.
Two measures of the non-archimedean character of a non-archimedean Riesz space L are the smallest ideal Ao (L) such that quotient space is Archimedean and the ideal I (L) = { x ϵ L: for some 0 ≤ v ϵ L, n |x| ≤ v for n = 1, 2, …}. In general Ao (L) ᴝ I (L). If L is itself a quotient space, a necessary and sufficient condition that Ao (L) = I (L) is given. There is an example where Ao (L) ≠ I (L).
A necessary and sufficient condition that a Riesz space L have every quotient space Archimedean is that for every 0 ≤ u, v ϵ L there exist u1 = sup (inf (n v, u): n = 1, 2, …), and real numbers m1 and m2 such that m1 u1 ≥ v1 and m2 v1 ≥ u1. If, in addition, L is Dedekind σ – complete, then L may be represented as the space of all functions which vanish off finite subsets of some non-empty set.
Resumo:
Multi-finger caging offers a rigorous and robust approach to robot grasping. This thesis provides several novel algorithms for caging polygons and polyhedra in two and three dimensions. Caging refers to a robotic grasp that does not necessarily immobilize an object, but prevents it from escaping to infinity. The first algorithm considers caging a polygon in two dimensions using two point fingers. The second algorithm extends the first to three dimensions. The third algorithm considers caging a convex polygon in two dimensions using three point fingers, and considers robustness of this cage to variations in the relative positions of the fingers.
This thesis describes an algorithm for finding all two-finger cage formations of planar polygonal objects based on a contact-space formulation. It shows that two-finger cages have several useful properties in contact space. First, the critical points of the cage representation in the hand’s configuration space appear as critical points of the inter-finger distance function in contact space. Second, these critical points can be graphically characterized directly on the object’s boundary. Third, contact space admits a natural rectangular decomposition such that all critical points lie on the rectangle boundaries, and the sublevel sets of contact space and free space are topologically equivalent. These properties lead to a caging graph that can be readily constructed in contact space. Starting from a desired immobilizing grasp of a polygonal object, the caging graph is searched for the minimal, intermediate, and maximal caging regions surrounding the immobilizing grasp. An example constructed from real-world data illustrates and validates the method.
A second algorithm is developed for finding caging formations of a 3D polyhedron for two point fingers using a lower dimensional contact-space formulation. Results from the two-dimensional algorithm are extended to three dimension. Critical points of the inter-finger distance function are shown to be identical to the critical points of the cage. A decomposition of contact space into 4D regions having useful properties is demonstrated. A geometric analysis of the critical points of the inter-finger distance function results in a catalog of grasps in which the cages change topology, leading to a simple test to classify critical points. With these properties established, the search algorithm from the two-dimensional case may be applied to the three-dimensional problem. An implemented example demonstrates the method.
This thesis also presents a study of cages of convex polygonal objects using three point fingers. It considers a three-parameter model of the relative position of the fingers, which gives complete generality for three point fingers in the plane. It analyzes robustness of caging grasps to variations in the relative position of the fingers without breaking the cage. Using a simple decomposition of free space around the polygon, we present an algorithm which gives all caging placements of the fingers and a characterization of the robustness of these cages.
Resumo:
Obtaining a reliable estimate of the bacterial population is one of the main problems facing the bacterial ecologist. The author discusses the various methods available and concludes that the observed variability in bacterial populations depends on the sampling interval used.
Resumo:
We propose a novel structure of planar optical configuration for implementation of the space-to-time conversion for femtosecond pulse shaping. The previous apparatuses of femtosecond pulse shaping are 4f Fourier-transforming type system that is usually large, expensive, difficult to align. The planar integration of free-space optical systems on solid substrates is an optical module with the attractive advantages of compact, reliable and robust. This apparatus is analyzed in details and the design of the particular lens for femtosecond pulse shaping based on planar optics is presented. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
The Maxwell integral equations of transfer are applied to a series of problems involving flows of arbitrary density gases about spheres. As suggested by Lees a two sided Maxwellian-like weighting function containing a number of free parameters is utilized and a sufficient number of partial differential moment equations is used to determine these parameters. Maxwell's inverse fifth-power force law is used to simplify the evaluation of the collision integrals appearing in the moment equations. All flow quantities are then determined by integration of the weighting function which results from the solution of the differential moment system. Three problems are treated: the heat-flux from a slightly heated sphere at rest in an infinite gas; the velocity field and drag of a slowly moving sphere in an unbounded space; the velocity field and drag torque on a slowly rotating sphere. Solutions to the third problem are found to both first and second-order in surface Mach number with the secondary centrifugal fan motion being of particular interest. Singular aspects of the moment method are encountered in the last two problems and an asymptotic study of these difficulties leads to a formal criterion for a "well posed" moment system. The previously unanswered question of just how many moments must be used in a specific problem is now clarified to a great extent.
Resumo:
If R is a ring with identity, let N(R) denote the Jacobson radical of R. R is local if R/N(R) is an artinian simple ring and ∩N(R)i = 0. It is known that if R is complete in the N(R)-adic topology then R is equal to (B)n, the full n by n matrix ring over B where E/N(E) is a division ring. The main results of the thesis deal with the structure of such rings B. In fact we have the following.
If B is a complete local algebra over F where B/N(B) is a finite dimensional normal extension of F and N(B) is finitely generated as a left ideal by k elements, then there exist automorphisms gi,...,gk of B/N(B) over F such that B is a homomorphic image of B/N[[x1,…,xk;g1,…,gk]] the power series ring over B/N(B) in noncommuting indeterminates xi, where xib = gi(b)xi for all b ϵ B/N.
Another theorem generalizes this result to complete local rings which have suitable commutative subrings. As a corollary of this we have the following. Let B be a complete local ring with B/N(B) a finite field. If N(B) is finitely generated as a left ideal by k elements then there exist automorphisms g1,…,gk of a v-ring V such that B is a homomorphic image of V [[x1,…,xk;g1,…,gk]].
In both these results it is essential to know the structure of N(B) as a two sided module over a suitable subring of B.