931 resultados para FUNGAL LACCASES
Resumo:
The exopolysaccharides are extracellular compounds produced by some species of fungi and bacteria. It is suggested that these molecules, even when in the form of complex polysaccharide-peptide, are the main bioactive molecules of many fungus. Some of the biological activities displayed by these compounds can be accentuated and others may arise when you add chemically polar or nonpolar groups to polysaccharides. The fruiting body of Pleurotus sajor-caju produces a heteropolysaccharide with antineoplastic and antimicrobial activity, but other biological activities of this polymer have not been evaluated. In this work the exopolysaccharide of Pleurotus sajor-caju was sulfated chemically and structurally characterized. We also evaluated the antiproliferative, antioxidant and anticoagulant activities from native exopolysaccharide (PN) and its sulfated derivated (PS). Polyacrylamide gel electrophoresis, infrared spectroscopy and nuclear magnetic resonance (¹³C) proved successful in sulfation of PN to obtain PS. Analysis by gas chromatography-mass spectroscopy showed that PN and PS are composed of mannose, galactose, 3-O-methyl-galactose and glucose in proportion percentage of 44,9:16,3:19,8:19 and 49, 7:14,4:17,7:18,2, respectively. The percentage of sulfate found in PS was 22.5%. Antioxidants assays revealed that the sulfation procedure affects differently the activities of exopolysaccharides, while the total antioxidant capacity, the scavenging activity of superoxide radical and ferric chelating were not affected by sulfation, on the other hand the chemical modification of PN enhanced the scavenging activity of hydroxyl radical and reducing power. PS also showed anticoagulant activity in a dose-dependent manner and clotting time was 3.0 times higher than the baseline value in APTT at 2 mg/mL. The exopolysaccharide not presented antiproliferative activity against HeLa tumor cells, but PS affects the cellular proliferation in a time-dependent manner. After 72 h, the inhibition rate of PS (2.0 mg/mL) on HeLa cells was about 60%. The results showed that PN sulfation increase some of their activities.
Resumo:
Fungal polysaccharides have received a great deal of attention due to itsbecause of their potential use in a wide rangegreat variety fromof industries. Some studies have demonstrated that polysaccharides extracted offrom basidiomycetes they have presented significant properties as anti-inflammatory, antimicrobial, antioxidant and anti-tumoral properties. In spite of thisDespite these potential properties, these mushrooms have not been insufficiently investigated, and the great number of antibiotics number produced forby these organisms suggests that they canmay be a new source of bioactives composites source. In tThe present work, reports onlated the chemical composition, potential antioxidant, antiinflammatory and citotoxycity of extracted polymers extracted offrom the fruits bodies of the fungiius Geastrum saccatum and Polyporus dermoporus, native mushrooms of the Atlantic forest inof the state of the Rio Grande do Norte, Brazil. The Cchemical analyses had revealed ademonstrated text of total sugar rates of 65% and 49%, and proteins of 7.0% for in extracts of G. saccatum and P. dermoporus extracts, respectively. The analyses ofNMR spectroscopy of RMN had demonstrated that these extracts are composites forof a complex involving β- glucans and- proteins complex. The inhibition of the formation of superoxide radicals formation was of 88.4% in G. saccatum and 83.3% in P. dermoporus, and 75 and 100% for inhibition of hydroxyls radicals inhibition. TopicalThe topic application of extracts the 10, 30 and 50 mg/kg extract in BALBc mice with cutaneous inflammation induced byfor croton oil demonstrated to inhibitedion of ear edema of ear and cells polimorfonuclears cells atin the inflamed siteplace, being this reply more effective in lower concentrations being more effective. The evaluation of the glucans of G. saccatum and P. dermoporus glucans under induced pleurisy for carrageenan-induced pleurisya of showed the antiinflammatory action of these composites., being analyzed tThe frame number in the pleural exudates and thedosage of nitric oxide dosage was also analyzed. The cytotoxic action of these polymers was analyzed throughthrough the mitochondrial function (MTT). The incubation of the glucans with mononuclear cells of the peripheral blood demonstrated that the extracted glucans extracted fromof G. saccatum havepossess a moderate cytotoxic action. These results suggest that these mushrooms possess polymers formed byfor a complex glucana-protein complex, with antiinflammatory and antioxidant actions
Resumo:
The aim of this work was to evaluate how an aqueous micellar system containing Amphotericin B (AmB) and sodium deoxycholate (DOC) can be rebuilt after heating treatment. Also a review of the literature about the new physicochemical and biological properties of this new system was carried out. Afterwards, heated (AmB-DOC-H) and unheated (AmB-DOC) micelles were subsequently diluted at four different concentrations (50mg.L-1, 5mg.L-1, 0.5mg.L-1 and 0.05mg.L-1) to perform the physicochemical study and, then, the pharmacotoxicity assay, in which two cell models were used for the in vitro experiments, Red Blood Cells (RBC) from human donors and Candida parapisilosis (Cp). While potassium (K+) and hemoglobin leakage from RBC were the used parameters to evaluate the acute and chronic toxicity, respectively, the efficacy of AmB-DOC and AmB-DOC-H were assessed by K+ leakage and cell survival rate from Cp. The spectral study revealed a slight change on the aggregate peak from 327nm to 323nm for AmB-DOC-H compared to AmB-DOC. Concerning the toxicity, although AmB-DOC and AmB-DOC-H presented different behavior for hemoglobin leakage, AmB-DOC produced higher leakage than AmB-DOC-H at high concentrations (from 5mg.L-1) with values tending to zero. However, concerning K+ leakage, both AmB-DOC and AmB-DOC-H, showed similar profile for both cell models, RBC and Cp (p<0,05). AmB-DOC-H and AmB-DOC also revealed similar profile of activity against Cp with equivalent survival rate. In short, the AmB-DOC-H showed much less toxicity than AmB-DOC, but remained as active as the late one against fungal cell. Therefore, the results highlight the importance of this new procedure as a simple, inexpensive and safe alternative to produce a new kind of micelle system for treatment of systemic fungal infections
Resumo:
Dermatomycoses are fungal infections that attack the skin, hair and nails, in addition to the mucosal and cutaneous-mucosal zones. Objective: Observe the frequency of dermatomycoses, identify etiological agents and establish an association between the results and sex. Age, collection site, time and lesion location. Methods: Between February, 2002 and December, 2004, samples were collected from patients at Giselda Trigueiro Hospital in Natal, Brazil, by lesion scraping and hair removal, following 70% alcohol disinfection, and submitted to direct and culture examination. Results: Of the 817 lesions collected, 325 (39.8%) were fungus positive, with the hair collection site yielding the highest number of positive results (65.8%) and the scalp and hair representing the most frequent lesion sites (65.9%). Negative results occurred mainly in the lower limbs (78.6%). Of the species identified, 55.9% were yeasts, 41.6% dermatophytes and 2.5% Fusarium spp. Non-albicans Candida was the most isolated yeast (43.3%), mainly in females (61.7%) over the age of 40 years (56.4%). T. rubrum was the most isolated dermatophyte (67.9%),notably in males (59.2%) in the 0-20 age group (44.7%). With respect to collection site, 73.9% of the dermatophytes were present in the skin and 61.1% of the yeasts in the nails. When assessing the collection site, the inguinocrural regional was 22.6% positive for dermatophytes, and the nails and hands, 41.8% for yeasts. Conclusions: The results obtained verified that: most of the positive lesions were found in the hair, whereas skin and nail lesions yielded more negative results; T. rubrum was the most isolated dermatophyte and non-albicans candida the most commonly found yeast; positivity was greater in males in the 0-20 year age group at the skin site and in the inguinocrural region, while yeasts were more frequent in females in the over-40 age group at the nail sites
Resumo:
Atta sexdens L, ante feed on the Fungus they cultivate on cut leaves inside their nests. The fungus, Leucoagaricus gongylophorus, metabolizes plant polysaccharides, such as xylan, starch, pectin, and cellulose, mediating assimilation of these compounds lay the ants, This metabolic integration may be an important part of the ant-fungus symbiosis, and it involves primarily xylan and starch, both of which support rapid fungal growth. Cellulose seems to be less important for symbiont nutrition, since it is poorly degraded and assimilated by the fungus. Pectin is rapidly degraded but slowly assimilated by L. gongylophorus, and its degradation may occur so that the fungus can more easily access other polysaccharides in the leaves.
Resumo:
Laboratory colonies of the leaf-cutting ants Atta sexdens feed daily with leaves of Ipomoea batatas showed ant mortality and a significant decrease in the size of the fungal garden after the second week, with complete depletion of nests after 5 weeks of treatment. The mean oxygen consumption rate of these ants was higher than the control (ants collected from nests feed with leaves of Eucalyptus alba), suggesting a physiological action of the leaves of I. batatas on the ants in addition to the effect of inhibiting the growth of the fungal garden.
Resumo:
Leucoagaricus gongylophorus, the symbiotic fungus of the leaf-cutting ants, degrades starch, this degradation being supposed to occur in the plant material which leafcutters forage to the nests, generating most of the glucose which the ants utilize for food. In the present investigation, we show that laboratory cultures of L. gongylophorus produce extracellular alpha-amylase and maltase which degrade starch to glucose, reinforcing that the ants can obtain glucose from starch through the symbiotic fungus. Glucose was found to repress a-amylase and, more severely, maltase activity, thus repressing starch degradation by L. gongylophorus, so that we hypothesize that: (1) glucose down-regulation of starch degradation also occurs in the Atta sexdens fungus garden; (2) glucose consumption from the fungus garden by A. sexdens stimutates degradation of starch from plant material by L. gongylophorus, which may represent a mechanism by which Leafcutters can control enzyme production by the symbiotic fungus. Since glucose is found in the fungus garden inside the nests, down-regulation of starch degradation by glucose is supposed to occur in the nest and play a part in the control of fungal enzyme production by leafcutters. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
1 Nine synthetic amides similar to natural N-piperidine-3-(4,5-methylenedioxyphenyl)-2-(E)-propenainide and N-pyrrolidine-3-(4,5-methylenedyoxiphenyl)2-(E)-propenamide were synthesized and identified by their spectroscopic data.2 the toxicity of these synthetic amides to the Atta sexdens rubropilosa workers and the antifungal activity against Leticoagaricus gongylophorus, the symbiotic fungus of the leaf-cutting ants, were determined.3 Workers ants that were fed daily on an artificial diet to which these compounds were added had a higher mortality rate than the controls for N-pyrrolidine-3(3',4'-methylenedioxyphenyl)-2-(E)-propenamide and N-benzyl-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide at a concentration of 100 mu g/mL.4 the completely inhibition (100%) of the fungal growth was observed with N-piperldine-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide and N,N-diethyl-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide at concentrations of 50 and 100 mu g/mL and N-pirrolidine-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide at a concentration of 100 mu g/mL.5 the possibility of controlling these insects in the future using synthetic piperamides that can simultaneously target both organisms is discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O isolamento e a manutenção de fungos basidiomicetos simbiontes de formigas da tribo Attini tem sido dificultado pela baixa velocidade de crescimento desses fungos, bem como pela presença de muitos microrganismos que vivem na superfície do material que as formigas mantêm no interior nos ninhos como substrato para o crescimento dos seus fungos simbiontes. No presente trabalho nós descrevemos um método que aumenta em mais de sete vezes a eficiência de isolamento desses fungos, quando comparada àquela obtida por procedimentos tradicionais. Ninhos subterrâneos de formigas atíneas dos gêneros Atta, Acromyrmex, Trachymyrmex e Mycetarotes foram localizados e deles foram coletadas amostras contendo fungos simbiontes e formigas, que foram transportadas para o laboratório, onde as formigas foram capazes de limpar a cultura do fungo e estimular o seu crescimento. em seguida, porções dos micélios foram assepticamente coletadas e transferidas para meio Yeast Nitrogen Base contendo glicose e cloranfenicol. Para facilitar a manutenção dos isolados em culturas de laboratório, diferentes nutrientes foram analisados para a elaboração de um meio de cultivo complexo, que possibilitou aumentar a velocidade de crescimento dos fungos e estocá-los por longos períodos. O método foi aplicado com sucesso para os fungos simbiontes de todos os gêneros de formigas estudados, gerando, assim, um procedimento extremamente útil para a formação e manutenção de uma coleção representativa de diferentes fungos simbiontes de formigas da tribo Attini.
Resumo:
Leaf-cutting ants of the genera Atta and Acromyrmex (tribe Attini) are symbiotic with basidiomycete fungi of the genus Leucoagaricus (tribe Leucocoprineae), which they cultivate on vegetable matter inside their nests. We determined the variation of the 28S, 18S, and 5.8S ribosomal DNA (rDNA) gene loci and the rapidly evolving internal transcribed spacers 1 and 2 (ITS1 and ITS2) of 15 sympatric and allopatric fungi associated with colonies of 11 species of leafcutter ants living up to 2,600 km apart in Brazil. We found that the fungal rDNA and ITS sequences from different species of ants were identical (or nearly identical) to each other, whereas 10 GenBank Leucoagaricus species showed higher ITS variation. Our findings suggest that Atta and Acromyrmex leafcutters living in geographic sites that are very distant from each other cultivate a single fungal species made up of closely related lineages of Leucoagaricus gongylophorus. We discuss the strikingly high similarity in the ITS1 and ITS2 regions of the Atta and Acromyrmex symbiotic L. gongylophorus studied by us, in contrast to the lower similarity displayed by their non-symbiotic counterparts. We suggest that the similarity of our L. gongylophorus isolates is an indication of the recent association of the fungus with these ants, and propose that both the intense lateral transmission of fungal material within leafcutter nests and the selection of more adapted fungal strains are involved in the homogenization of the symbiotic fungal stock.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Natural oils have shown a scientific importance due to its pharmacological activity and renewable character. The copaiba (Copaifera langsdorffii) and Bullfrog (Rana catesbeiana Shaw) oils are used in folk medicine particularly because the anti-inflammatory and antimicrobial activities. Emulsion could be eligible systems to improve the palatability and fragrance, enhance the pharmacological activities and reduce the toxicological effects of these oils. The aim of this work was to investigate the antimicrobial activity of emulsions based on copaiba (resin-oil and essential-oil) and bullfrog oils against fungi and bacteria which cause skin diseases. Firstly, the essential oil was extracted from copaiba oil-resin and the oils were characterized by gas chromatography coupled to a mass spectrometry (GC-MS). Secondly, emulsion systems were produced. A microbiological screening test with all products was performed followed (the minimum inhibitory concentration, the bioautography method and the antibiofilm determination). Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, Candida albicans, C. parapsilosis, C. glabrata, C. krusei and C. tropicalis American Type Culture Collection (ATCC) and clinical samples were used. The emulsions based on copaiba oil-resin and essential oil improved the antimicrobial activity of the pure oils, especially against Staphylococcus e Candida resistant to azoles. The bullfrog oil emulsion and the pure bullfrog oil showed a lower effect on the microorganisms when compared to the copaiba samples. All the emulsions showed a significant antibiofilm activity by inhibiting the cell adhesion. Thus, it may be concluded that emulsions based on copaiba and bullfrog oils are promising candidates to treatment of fungal and bacterial skin infections
Resumo:
The frequency of disseminated candidiasis caused by yeast has enhancing in intensive care unit. Despite the availability of new antifungal drugs, C. albicans sepsis mortality causes can be as high as 30-40%. So, it has been needed to looking for a new therapeutic medicament that helps in treatment and prevention of this infection. Previous data that demonstrated that particulated β-glucan stimulates the immune system and experiments of this work were conducted to investigating if β-glucan extracted from Saccharomices cerevisiae, could modified the evolution of mouse model C. albicans systemic infection. Balb/c mice with sepsis and β-1,3 glucan treated or not were analyzed the influence of β-1,3 glucan in survival of the animals, in the fungal burdens in kidney, in the production of urea and TNF even in the histopathology of kidney. The experiments shown that the infected animals a nd glucan treated had great survival (p<0,05), less unit form colony in kidney and normal levels of urea. In the kidney histopathology of not glucan treated animals it has seen more lesions when compared with treated animals. So we conclude that β-1,3 glucan could stimulate the immune system against disseminated C. albicans
Resumo:
Este trabalho teve como objetivo investigar o efeito da temperatura e do teor de umidade do solo na sobrevivência de Metarhizium anisopliae (Metsch.) Sorok. em três tipos de solos. Foram utilizados o Latossolo Vermelho textura argilosa, Latossolo Vermelho textura média e Argissolo Vermelho Amarelo textura arenosa média. As temperaturas empregadas foram 21,5; 26,8 e 31,5°C, e os teores de umidade foram 35, 65 e 100% de saturação. A sobrevivência do fungo foi avaliada após zero, 20, 40, 60, 80, 100 e 120 dias de incubação em cada temperatura estudada. Na análise do efeito do teor de umidade, a sobrevivência foi avaliada após zero, 14, 28, 42, 56, 70, 84, 98 e 112 dias de incubação à temperatura de 27,0±1,0°C. em ambos os ensaios, foi determinado o número de unidades formadores de colônias (UFC) em placa de Petri. Houve influência significativa da temperatura e do teor de umidade na sobrevivência do fungo. O maior crescimento e a maior sobrevivência ocorreram nas temperaturas de 21,5 e 26,8°C, enquanto que, no solo incubado a 31,5°C, o fungo cresceu pouco, e a população declinou rapidamente. No teor de 65% de umidade, houve rápido crescimento do fungo, mas no 112° dia foi observado um declínio da população nos três tipos de solos. Nos teores de 35 e 100% de umidade, o crescimento foi menor, mas obteve-se maior sobrevivência do fungo no solo.