977 resultados para FLUORESCENCE MICROSCOPY
Resumo:
The effects of dark-induced stress on the evolution of the soluble metabolites present in senescent soybean (Glycine max L.) nodules were analysed in vitro using C-13- and P-31-NMR spectroscopy. Sucrose and trehalose were the predominant soluble storage carbons. During dark-induced stress, a decline in sugars and some key glycolytic metabolites was observed. Whereas 84% of the sucrose disappeared, only one-half of the trehalose was utilised. This decline coincides with the depletion of Gln, Asn, Ala and with an accumulation of ureides, which reflect a huge reduction of the N-2 fixation. Concomitantly, phosphodiesters and compounds like P-choline, a good marker of membrane phospholipids hydrolysis and cell autophagy, accumulated in the nodules. An autophagic process was confirmed by the decrease in cell fatty acid content. In addition, a slight increase in unsaturated fatty acids (oleic and linoleic acids) was observed, probably as a response to peroxidation reactions. Electron microscopy analysis revealed that, despite membranes dismantling, most of the bacteroids seem to be structurally intact. Taken together, our results show that the carbohydrate starvation induced in soybean by dark stress triggers a profound metabolic and structural rearrangement in the infected cells of soybean nodule which is representative of symbiotic cessation.
Resumo:
L'élément génétique intégratif et conjugatif auto-transférable de 103 kb qui se trouve dans le génome de Pseudomonas knackmussii B13 (ICEc/c) confère la capacité de dégrader le 3-chlorobenzoate et le 2-aminophénol. L'élément ICE c/c peut être transféré par conjugaison de la souche B13 à diverses bêta- et gamma- protéobactéries. Seule une sous-population de 3 à 5% des cellules transfère l'élément, les cellules dites "compétentes pour le transfert". L'acquisition de la compétence pour le transfert est vraisemblablement la conséquence d'une régulation bistable, conduisant une partie des cellules au transfert de l'élément ICE c/c tandis que, dans les autres, l'élément reste quiescent et ne se transfère pas. À ce jour, les mécanismes et les acteurs moléculaires qui régulent l'activation bistable de l'élément sont restés inconnus. Mon travail de doctorat visait à identifier les éléments bistables du régulon de la compétence pour le transfert et d'analyser les fondements moléculaires de la bistabilité de l'élément ICE c/c chez P. knackmussii. Le premier chapitre introduit le thème du transfert génétique horizontal avec un accent particulier sur les éléments intégratifs et conjugatifs (ICE) et ICEcIc. L'état actuel des connaissances sur l'organisation génétique, la régulation, l'intégration et le transfert de différents modèles de ICEs est exposé en détail. En outre, je m'étends sur les phénomènes d'hétérogénéité et de bistabilité phénotyplques, qu'on peut distinguer dans une population isogénique dans des conditions de culture homogènes, et qui sont susceptibles de jouer un rôle dans le transfert de l'élément ICE c/c, dans la mesure où il ne s'active et n'est transférable que dans une très petite sous-population de cellules. Dans le chapitre 2, je présente une analyse globale des régions promotrices minimales des gènes appartenant au régulon de la compétence pour le transfert de l'élément ICE c/c. Nous avons étudié les caractéristiques d'expression des promoteurs et, s'ils s'avéraient bistables, leur activation dans le temps par comparaison avec le mutant lntB13. Pour ce faire, nous avons utilisé des fusions de promoteurs avec des gènes rapporteurs et testé l'expression bistable chez P. knackmussii par microscopie à épifluorescence. Pour six promoteurs présentant une expression bistable, nous avons employé de la microscopie temporelle pour déterminer la chronologie de leur expression par rapport à Pint et PinR. Parmi eux, nous avons identifié deux gènes exprimés précocement et trois gènes exprimés tardivement dans le processus d'acquisition de la compétence de transfert. Dans le chapitre 3, j'expose une analyse d'expression génétique pour l'un des groupes de gènes dont la transcription est la plus élevée dans la région conservée de ICE c/c, les gènes orf81655-orf68241 contenus dans une région de 14 kb. Nous montrons d'abord que cet opéron fait partie du même régulon bistable que intB13 et inrR et analysons les caractéristiques génétiques qui conduisent à une transcription élevée. Nous étudions les fonctions biologiques de ce groupe de gènes par des délétlons ciblées et montrons que certaines d'entre elles empêchent le transfert de l'élément. Nous approfondissons la caractérlsatlon de I'orf8l655 en construisant une fusion transcrlptionnelle avec le gène codant pour la protéine fluorescente verte (egfp) (en utilisant le système minl-Tn5). L'expression de Vorf81655 dans des cellules individuelles est comparée au signal mesuré par hybridation in situ en fluorescence (FISH) sur le ARN messager du gène. En utilisant FISH, des délétlons du promoteur et de l'analyse directe de transcription, nous avons localisé la région promotrice du groupe de gènes. En outre, nous avons utilisé des mutations dirigées pour comprendre la bistabilité de cette région promotrice, caractérisée par une transcription très élevée et une traduction lente de l'ARN messager. Dans le chapitre 4, nous nous efforçons de comprendre comment la bistabilité est générée au sein du régulon te de l'élément ICE c/c. Pour ce faire, nous avons tenté de reconstituer une expression bistable, dans un hôte qui ne présente pas de bistabilité naturellement, à partir d'éléments génétiques individuels. L'hôte choisi est Pseudomonas putida dans lequel nous avons introduit une copie unique de Pint, PinR ou PaipA fusionnés à la egfp, construits qui permettent d'observer l'apparition de bistabilité. Nous avons ensuite construit différents assemblages de composants génétiques de l'élément ICE c/c, en nous concentrant sur la région parA-inrR. En effet, nous avons pu démontrer qu'une expression bistable apparaît dans P. putida grâce à ces éléments en l'absence de l'élément ICE c/c complet. À noter que la plupart des construits génétiques activent PaipA ou P|,,R, mais qu'un seul recrée la bistabilité de Pint, ce qui suggère que la région parA-inrR permet à la fois d'engendrer la bistabilité et d'opérer la transition entre les promoteurs précoces et les promoteurs tardifs du régulon de la bistabilité. Dans le chapitre 5, nous concluons sur une discussion de la pertinence de nos résultats et sur de futures perspectives de recherche. -- The 103-kb self-transmissible integrative and conjugative element (ICE) of Pseudomonas knackmussii B13 (ICEc/c) confers the capacity to degrade 3- chlorobenzoate and 2-aminophenol. ICEc/c can be conjugated from strain B13 to a variety of Beta- and Gammaproteobacteria. Interestingly, ICE c/c transfer is observed in a subpopulatlon of cells (3-5%) only, the so-called 'transfer competent' cells. The formation of transfer competence (tc) is thought to be the consequence of a 'bistable' decision, which forces those cells to follow the developmental path which leads to ICEc/c transfer, whereas in others ICE c/c remains silent and does not transfer. So far, the mechanisms and molecular partners generating this bistable transfer activation in cells of P. knackmussii B13 remain mostly unidentified. This thesis aimed at understanding the extent of the tc bistability regulon and to dissect the molecular basis of bistabillty formation of ICEc/c in P. knackmussii. The first chapter is a general Introduction on horizontal gene transfer (HGT) with particular emphasis on ICEs and ICE c/c. The emphasis is made on the current knowledge about the HGT gene organization, regulation and specific integration and transfer aspects of the different ICEs models. Furthermore, I focus on the phenomena of phenotypic heterogeneity and bistability (the property of two distinguishable phenotypes existing within an isogenic population under homogeneous conditions), which may play a particular role in ICEc/c behaviour, since ICE activation and transfer only occurs in a very small subpopulation of cells. In Chapter Two, I focus on a global analysis of the different core promoters that might belong to the ICEc/c tc pathway regulon. We studied both expression patterns of ICEc/c promoters and, once being identified as "bistable", their temporal activation compared to that of intB13. In order to do this, we used promoter reporter fusions and tested blstability expression in P. knackmussii using epifluorescence microscopy. For the 6 promoters that showed bistable expression, we used time-lapse microscopy to study the timing of promoter expression in comparison to that of P,,,t or PlnR. We could establish two "early" and 3 "late" phase promoters in the process of transfer competence. In Chapter Three, I focused my attention on analysis of gene expression of one of the most highly transcribed gene clusters in the conserved core region of ICEc/c, a 14-kb gene cluster formed by the genes orf81655-orf68241. First we showed that this operon is part of the same bistability 'regulon' as intB13 and inrR, and analysed the genetic features that lead to high transcription. We studied the potential biological function of this cluster for ICE c/c by making specific gene deletions, showing that some interrupt ICEc/c transfer. We further analysed the orfdl655 promoter by constructing transcriptional egfp fusion reporter strains using the miniTn5 delivery system. Expression of the orf81655 promoter in single cells was compared to signals measured by Fluorescence In Situ Hybridization (FISH) on orfSl655 mRNA. We localized the promoter region of the gene cluster using FISH, promoter deletions, and by direct transcript analysis. We further used site-directed mutagenesis to understand the bistability character of the promoter region and the extremely high transcription but low translation from this mRNA. In Chapter Four, we set out to understand how bistability is generated in the tc pathway of ICEc/c. For this we tried rebuilding bistable expression from ICEc/c individual gene components in a host, which normally does not display bistability. As host we used P. putida without ICEc/c but with a single copy Pint-, PlnR- or PalpA- egfp fusion that enabled us to verify bistability formation. Subsequently, we built different assemblages of ICEc/c gene components, focusing on the parA-inrR region. Indeed, we found that bistable expression can be build from those components in P. putida without ICEc/c. Interestingly, most genetic constructs activated PaipA or PlnR, but only one resulted in bistable activation of PinT. This suggests that the parA-inrR region acts as a bistability "generator", but also as a bistability "relay" from early to late promoters in the tc pathway hierarchy. In the final fifth chapter, we conclude with a discussion of the relevance of the present thesis and the resulting perspectives for future studies.
Resumo:
The silicon photomultiplier (SiPM) is a novel detector technology that has undergone a fast development in the last few years, owing to its single-photon resolution and ultra-fast response time. However, the typical high dark count rates of the sensor may prevent the detection of low intensity radiation fluxes. In this article, the time-gated operation with short active periods in the nanosecond range is proposed as a solution to reduce the number of cells fired due to noise and thus increase the dynamic range. The technique is aimed at application fields that function under a trigger command, such as gated fluorescence lifetime imaging microscopy.
Resumo:
Spectroscopic ellipsometry and high resolution transmission electron microscopy have been used to characterize microcrystalline silicon films. We obtain an excellent agreement between the multilayer model used in the analysis of the optical data and the microscopy measurements. Moreover, thanks to the high resolution achieved in the microscopy measurements and to the improved optical models, two new features of the layer-by-layer deposition of microcrystalline silicon have been detected: i) the microcrystalline films present large crystals extending from the a-Si:H substrate to the film surface, despite the sequential process in the layer-by-layer deposition; and ii) a porous layer exists between the amorphous silicon substrate and the microcrystalline silicon film.
Resumo:
Cells couple growth with division and regulate size in response to nutrient availability. In rod-shaped fission yeast, cell-size control occurs at mitotic commitment. An important regulator is the DYRK-family kinase Pom1, which forms gradients from cell poles and inhibits the mitotic activator Cdr2, itself localized at the medial cortex. Where and when Pom1 modulates Cdr2 activity is unclear as Pom1 medial cortical levels remain constant during cell elongation. Here we show that Pom1 re-localizes to cell sides upon environmental glucose limitation, where it strongly delays mitosis. This re-localization is caused by severe microtubule destabilization upon glucose starvation, with microtubules undergoing catastrophe and depositing the Pom1 gradient nucleator Tea4 at cell sides. Microtubule destabilization requires PKA/Pka1 activity, which negatively regulates the microtubule rescue factor CLASP/Cls1/Peg1, reducing CLASP's ability to stabilize microtubules. Thus, PKA signalling tunes CLASP's activity to promote Pom1 cell side localization and buffer cell size upon glucose starvation.
Resumo:
Newly generated olfactory receptor axons grow from the peripheral to the central nervous system aided by olfactory ensheathing cells (OECs). Thus, OEC transplantation has emerged as a promising therapy for spinal cord injuries and for other neural diseases. However, these cells do not present a uniform population, but, instead, a functionally heterogeneous population that exhibits a variety of responses including adhesion, repulsion and crossover during cell-cell and cell-matrix interactions. Some studies report that the migratory properties of OECs are compromised by inhibitory molecules and potentiated by chemical gradients. Here, we demonstrated that rodent OECs express all the components of the Nogo Receptor complex and that their migration is blocked by Myelin. Next, we used cell tracking and traction force microscopy to analyze OEC migration and its mechanical properties over Myelin. Our data relate the absence of traction force of OEC with lower migratory capacity, which correlates with changes in the F-Actin cytoskeleton and focal adhesion distribution. Lastly, OEC traction force and migratory capacity is enhanced after cell incubation with the Nogo Receptor inhibitor NEP1-40.
Resumo:
In a classic model of mammalian brain formation, precursors of principal glutamatergic neurons migrate radially along radial glia fibers whereas GABAergic interneuron precursors migrate tangentially. These migration modes have significant implications for brain function. Here we used clonal lineage tracing of active radial glia-like neural stem cells in the adult mouse dentate gyrus and made the surprising discovery that proliferating neuronal precursors of glutamatergic granule neurons exhibit significant tangential migration along blood vessels, followed by limited radial migration. Genetic birthdating and morphological and molecular analyses pinpointed the neuroblast stage as the main developmental window when tangential migration occurs. We also developed a partial "whole-mount" dentate gyrus preparation and observed a dense plexus of capillaries, with which only neuroblasts, among the entire population of progenitors, are directly associated. Together, these results provide insight into neuronal migration in the adult mammalian nervous system.
Resumo:
Molecular probe techniques have made important contributions to the determination of microstructure of surfactant assemblies such as size, stability, micropolarity and conformation. Conductivity and surface tension were used to determine the critical aggregation concentration (cac) of polymer-surfactant complexes and the critical micellar concentration (cmc) of aqueous micellar aggregates. The results are compared with those of fluorescent techniques. Several surfactant systems were examined, 1-butanol-sodium dodecylsulfate (SDS) mixtures, solutions containing poly(ethylene oxide)-SDS, poly(vinylpyrrolidone)-SDS and poly(acrylic acid)-alkyltrimethylammonium bromide complexes. We found differences between the cac and cmc values obtained by conductivity or surface tension and those obtained by techniques which use hydrophobic probe.
Resumo:
X-This work shows an alternative method to copper determination by X-Ray Fluorescence (XRF). Since copper concentration in natural waters is not enough to reach XRF detection limit, a liquid-solid preconcentration procedure was proposed. Glycerin was used to complex the metal increasing its adsorption on activated charcoal. The solid phase was used to XRF determination. Several parameters were evaluated, such as, the complexation pH, the charcoal adsorption limit and the glycerin concentration. The interferences are lead and bismuth and the sensitivities decreased in the order Cu2+, Bi3+ and Pb2+. The advantages of the method are its simplicity, low cost and low spectral interference.
Resumo:
A natural clay from Campina Grande region (Paraíba, Brazil), with 8.57% of Fe2O3, was used to study the most appropriate condition to carry out the iron extraction, without altering the clay structure in a significant way. Samples were treated with the Dithionite-Citrate-Bicarbonate method (DCB) for 30 and 120 minutes (pH=9.1), and also with citric acid (pH=1.8; time=15min), at 75°C. Conductivity measurements, X-ray fluorescence, X-ray diffraction, energy-dispersive spectrometry, electron-diffraction with transmission electron microscopy and textural evaluation by nitrogen adsorption were done. The treatment in a basic medium was more selective for iron removal than in acid condition. The time of 30 minutes, with 1.6 g Na2S2O4/10 g clay, was the best condition for the iron extraction.
Resumo:
Antimicrobial peptides offer a new class of therapeutic agents to which bacteria may not be able todevelop genetic resistance, since their main activity is in the lipid component of the bacterial cell mem-brane. We have developed a series of synthetic cationic cyclic lipopeptides based on natural polymyxin,and in this work we explore the interaction of sp-85, an analog that contains a C12 fatty acid at theN-terminus and two residues of arginine. This analog has been selected from its broad spectrum antibac-terial activity in the micromolar range, and it has a disruptive action on the cytoplasmic membrane ofbacteria, as demonstrated by TEM. In order to obtain information on the interaction of this analog withmembrane lipids, we have obtained thermodynamic parameters from mixed monolayers prepared withPOPG and POPE/POPG (molar ratio 6:4), as models of Gram positive and Gram negative bacteria, respec-tively. LangmuirBlodgett films have been extracted on glass plates and observed by confocal microscopy,and images are consistent with a strong destabilizing effect on the membrane organization induced bysp-85. The effect of sp-85 on the membrane is confirmed with unilamelar lipid vesicles of the same com-position, where biophysical experiments based on fluorescence are indicative of membrane fusion andpermeabilization starting at very low concentrations of peptide and only if anionic lipids are present.Overall, results described here provide strong evidence that the mode of action of sp-85 is the alterationof the bacterial membrane permeability barrier.
Resumo:
Fluorescence resonance energy transfer (FRET) is a non-radiative energy transfer from a fluorescent donor molecule to an appropriate acceptor molecule and a commonly used technique to develop homogeneous assays. If the emission spectrum of the donor overlaps with the excitation spectrum of the acceptor, FRET might occur. As a consequence, the emission of the donor is decreased and the emission of the acceptor (if fluorescent) increased. Furthermore, the distance between the donor and the acceptor needs to be short enough, commonly 10-100 Å. Typically, the close proximity between the donor and the acceptor is achieved via bioaffinity interactions e.g. antibody binding antigen. Large variety of donors and acceptors exist. The selection of the donor/acceptor pair should be done not only based on the requirements of FRET but also the performance expectancies and the objectives of the application should be considered. In this study, the exceptional fluorescence properties of the lanthanide chelates were employed to develop two novel homogeneous immunoassays: a non-competitive hapten (estradiol) assay based on a single binder and a dual-parametric total and free PSA assay. In addition, the quenching efficiencies and energy transfer properties of various donor/acceptor pairs were studied. The applied donors were either europium(III) or terbium(III) chelates; whereas several organic dyes (both fluorescent and quenchers) acted as acceptors. First, it was shown that if the interaction between the donor/acceptor complexes is of high quality (e.g. biotin-streptavidin) the fluorescence of the europium(III) chelate could be quenched rather efficiently. Furthermore, the quenching based homogeneous non-competitive assay for estradiol had significantly better sensitivity (~67 times) than a corresponding homogeneous competitive assay using the same assay components. Second, if the acceptors were chosen to emit at the emission minima of the terbium(III) chelate, several acceptor emissions could be measured simultaneously without significant cross-talk from other acceptors. Based on these results, the appropriate acceptors were chosen for the dual-parameter assay. The developed homogeneous dual-parameter assay was able to measure both total and free PSA simultaneously using a simple mix and measure protocol. Correlation of this assay to a heterogeneous single parameter assay was excellent (above 0.99 for both) when spiked human plasma samples were used. However, due to the interference of the sample material, the obtained concentrations were slightly lower with the homogeneous than the heterogeneous assay, especially for the free PSA. To conclude, in this work two novel immunoassay principles were developed, which both are adaptable to other analytes. However, the hapten assay requires a rather good antibody with low dissociation rate and high affinity; whereas the dual-parameter assay principle is applicable whenever two immunometric complexes can form simultaneously, provided that the requirements of FRET are fulfilled.
Resumo:
Membrane active peptides can perturb the lipid bilayer in several ways, such as poration and fusion of the target cell membrane, and thereby efficiently kill bacterial cells. We probe here the mechanistic basis of membrane poration and fusion caused by membrane-active, antimicrobial peptides. We show that the cyclic antimicrobial peptide, BPC194, inhibits growth of Gram-negative bacteria and ruptures the outer and inner membrane at the onset of killing, suggesting that not just poration is taking place at the cell envelope. To simplify the system and to better understand the mechanism of action, we performed Förster resonance energy transfer and cryogenic transmission electron microscopy studies in model membranes and show that the BPC194 causes fusion of vesicles. The fusogenic action is accompanied by leakage as probed by dual-color fluorescence burst analysis at a single liposome level. Atomistic molecular dynamics simulations reveal how the peptides are able to simultaneously perturb the membrane towards porated and fused states. We show that the cyclic antimicrobial peptides trigger both fusion and pore formation and that such large membrane perturbations have a similar mechanistic basis
Resumo:
An analytical study based on extraction with acetonitrile-water, immunoaffinity column cleanup, and HPLC/fluorescence detection for separation and identification of ochratoxin A in coriander was carried out. Validation of the applied methodology was done through accuracy and precision studies. Homogenized samples of coriander were spiked in triplicate with ochratoxin A at 0.5, 1.0, 2.0, and 5.0 µg/kg levels. Recovery values were in the range of 98% for a fortification level at 0.5 µg/kg to 109.1% at 1.0 µg/kg. Application to coriander samples available in Portuguese markes showed no contamination with ochratoxin A.
Resumo:
We present the implementation of dynamic electrostatic force microscopy in liquid media. This implementation enables the quantitative imaging of local dielectric properties of materials in electrolyte solutions with nanoscale spatial resolution. Local imaging capabilities are obtained by probing the frequency-dependent and ionic concentration-dependent electrostatic forces at high frequency (>1 MHz), while quantification of the interaction forces is obtained with finite-element numerical calculations. The results presented open a wide range of possibilities in a number of fields where the dielectric properties of materials need to be probed at the nanoscale and in a liquid environment.