904 resultados para Estrategies of instruction
Resumo:
The current study explores first, second and third year UK accounting students’ perceptions of authorial identity and their implications for unintentional plagiarism. The findings suggest that whilst all students have reasonably positive perceptions of their authorial identity, there is room for improvement. Significant differences in second year students’ perceptions were reported for some positive aspects of authorial identity. However, results for negative aspects show that second year students find it significantly more difficult to express accounting in their own words than first and third years. Furthermore, second years are significantly more afraid than first years that what they write will look unimpressive. Finally, the results for approaches to writing, which also have implications for unintentional plagiarism, revealed that students across all years appear to adopt aspects of top-down, bottom-up and pragmatic approaches to writing. Emerging from these findings, the study offers suggestions to accounting educators regarding authorial identity instruction.
Resumo:
Simultaneous multithreading processors dynamically share processor resources between multiple threads. In general, shared SMT resources may be managed explicitly, for instance, by dynamically setting queue occupation bounds for each thread as in the DCRA and Hill-Climbing policies. Alternatively, resources may be managed implicitly; that is, resource usage is controlled by placing the desired instruction mix in the resources. In this case, the main resource management tool is the instruction fetch policy which must predict the behavior of each thread (branch mispredictions, long-latency loads, etc.) as it fetches instructions.
Resumo:
In a dynamic reordering superscalar processor, the front-end fetches instructions and places them in the issue queue. Instructions are then issued by the back-end execution core. Till recently, the front-end was designed to maximize performance without considering energy consumption. The front-end fetches instructions as fast as it can until it is stalled by a filled issue queue or some other blocking structure. This approach wastes energy: (i) speculative execution causes many wrong-path instructions to be fetched and executed, and (ii) back-end execution rate is usually less than its peak rate, but front-end structures are dimensioned to sustained peak performance. Dynamically reducing the front-end instruction rate and the active size of front-end structure (e.g. issue queue) is a required performance-energy trade-off. Techniques proposed in the literature attack only one of these effects.
In previous work, we have proposed Speculative Instruction Window Weighting (SIWW) [21], a fetch gating technique that allows to address both fetch gating and instruction issue queue dynamic sizing. SIWW computes a global weight on the set of inflight instructions. This weight depends on the number and types of inflight instructions (non-branches, high confidence or low confidence branches, ...). The front-end instruction rate can be continuously adapted based on this weight. This paper extends the analysis of SIWW performed in previous work. It shows that SIWW performs better than previously proposed fetch gating techniques and that SIWW allows to dynamically adapt the size of the active instruction queue.
Resumo:
Designing satellite structures poses an ongoing challenge as the interaction between analysis, experimental testing, and manufacturing phases is underdeveloped. Finite Element Analysis for Satellite Structures: Applications to Their Design, Manufacture and Testing explains the theoretical and practical knowledge needed to perform design of satellite structures. By layering detailed practical discussions with fully developed examples, Finite Element Analysis for Satellite Structures: Applications to Their Design, Manufacture and Testing provides the missing link between theory and implementation.
Computational examples cover all the major aspects of advanced analysis; including modal analysis, harmonic analysis, mechanical and thermal fatigue analysis using finite element method. Test cases are included to support explanations an a range of different manufacturing simulation techniques are described from riveting to shot peening to material cutting. Mechanical design of a satellites structures are covered in three steps: analysis step under design loads, experimental testing to verify design, and manufacturing.
Stress engineers, lecturers, researchers and students will find Finite Element Analysis for Satellite Structures: Applications to Their Design, Manufacture and Testing a key guide on with practical instruction on applying manufacturing simulations to improve their design and reduce project cost, how to prepare static and dynamic test specifications, and how to use finite element method to investigate in more details any component that may fail during testing.
Resumo:
In South Korea, as in many other parts of the world, children begin learning English when they are very young. Korean parents want their children to learn English as quickly as possible and often make heavy financial and other investments in their children’s English language education. English language teachers of school-age learners in Korea often feel pressure and in some cases criticism from parents regarding English language instruction. This article reports the results of a study designed to begin examining the perceptions that Korean parents hold regarding English language instruction. It illustrates how some of their beliefs reflect the latest language teaching research, whereas others are more indicative of traditional Korean belief systems, educational approaches, and methodologies.
Resumo:
In three studies we looked at two typical misconceptions of probability: the representativeness heuristic, and the equiprobability bias. The literature on statistics education predicts that some typical errors and biases (e.g., the equiprobability bias) increase with education, whereas others decrease. This is in contrast with reasoning theorists’ prediction who propose that education reduces misconceptions in general. They also predict that students with higher cognitive ability and higher need for cognition are less susceptible to biases. In Experiments 1 and 2 we found that the equiprobability bias increased with statistics education, and it was negatively correlated with students’ cognitive abilities. The representativeness heuristic was mostly unaffected by education, and it was also unrelated to cognitive abilities. In Experiment 3 we demonstrated through an instruction manipulation (by asking participants to think logically vs. rely on their intuitions) that the reason for these differences was that these biases originated in different cognitive processes.
Resumo:
There is conflicting evidence on whether collaborative group work leads to improved classroom relations, and if so how. A before and after design was used to measure the impact on work and play relations of a collaborative learning programme involving 575 students 9e12 years old in single- and mixed-age classes across urban and rural schools. Data were also collected on student interactions and teacher ratings of their group-work skills. Analysis of variance revealed significant gains for both types of relation. Multilevel modelling indicated that better work relations were the product of improving group skills, which offset tensions produced by transactive dialogue, and this effect fed through in turn to play relations. Although before intervention rural children were familiar with each other neither this nor age mix affected outcomes. The results suggest the social benefits of collaborative learning are a separate outcome of group work, rather than being either a pre-condition for, or a direct consequence of successful activity, but that initial training in group skills may serve to enhance these benefits.
Resumo:
Aim: This paper is a review protocol that will be used to identify, critically appraise and synthesize the best current evidence relating to the use of online learning and blended learning approaches in teaching clinical skills in undergraduate nursing.
Background: Although previous systematic reviews on online learning versus face to face learning have been undertaken (Cavanaugh et al. 2010, Cook et al. 2010), a systematic review on the impact of online learning and blended learning for teaching clinical skills has yet to be considered in undergraduate nursing. By reviewing nursing students’ online learning experiences, systems can potentially be designed to ensure all students’ are supported appropriately to meet their learning needs.
Methods/Design: The key objectives of the review are to evaluate how online-learning teaching strategies assist nursing students learn; to evaluate the students satisfaction with this form of teaching; to explore the variety of online-learning strategies used; to determine what online-learning strategies are more effective and to determine if supplementary face to face instruction enhances learning. A search of the following databases will be made MEDLINE, CINAHL, BREI, ERIC and AUEI. This review will follow the Joanna Briggs Institute guidance for systematic reviews of quantitative and qualitative research.
Conclusion: This review intends to report on a combination of student experience and learning outcomes therefore increasing its utility for educators and curriculum developers involved in healthcare education.
Resumo:
In 2000–2002 an innovative early years curriculum, the Enriched Curriculum (EC), was introduced
into 120 volunteer schools across Northern Ireland, replacing a traditional curriculum similar to
others across the UK at that time. It was intended by the designers to be developmentally appropriate
and play-based with the primary goal of preventing the experience of persistent early failure in
children. The EC was not intended to be a literacy and numeracy intervention, yet it did considerably
alter pedagogy in these domains, particularly the age at which formal reading and mathematics
instruction began. As part of a multi-method evaluation running from 2000–2008, the research
team followed the primary school careers of the first two successive cohorts of EC children, comparing
them with year-ahead controls attending the same 24 schools. Compared to the year-ahead control
group, the findings show that the EC children’s reading and mathematics scores fell behind in
the first two years but the majority of EC children caught up by the end of their fourth year. Thereafter,
the performance of the first EC cohort fell away slightly, while that of the second continued to
match that of controls. Overall, the play-based curriculum had no statistically significant positive
effects on reading and mathematics in the medium term. At best, the EC children’s scores matched
those of controls.
Resumo:
This article presents a systematic review of research on the achievement outcomes of all types of approaches to teaching science in elementary schools. Study inclusion criteria included use of randomized or matched control groups, a study duration of at least 4 weeks, and use of achievement measures independent of the experimental treatment. A total of 23 studies met these criteria. Among studies evaluating inquiry-based teaching approaches, programs that used science kits did not show positive outcomes on science achievement measures (weighted ES=+0.02 in 7 studies), but inquiry-based programs that emphasized professional development but not kits did show positive outcomes (weighted ES=+0.36 in 10 studies). Technological approaches integrating video and computer resources with teaching and cooperative learning showed positive outcomes in a few small, matched studies (ES=+0.42 in 6 studies). The review concludes that science teaching methods focused on enhancing teachers’ classroom instruction throughout the year, such as cooperative learning and science-reading integration, as well as approaches that give teachers technology tools to enhance instruction, have significant potential to improve science learning.
Resumo:
Background: Medical Research Council (MRC) guidelines recommend applying theory within complex interventions to explain how behaviour change occurs. Guidelines endorse self-management of chronic low back pain (CLBP) and osteoarthritis (OA), but evidence for its effectiveness is weak. Objective: This literature review aimed to determine the use of behaviour change theory and techniques within randomised controlled trials of group-based self-management programmes for chronic musculoskeletal pain, specifically CLBP and OA. Methods: A two-phase search strategy of electronic databases was used to identify systematic reviews and studies relevant to this area. Articles were coded for their use of behaviour change theory, and the number of behaviour change techniques (BCTs) was identified using a 93-item taxonomy, Taxonomy (v1). Results: 25 articles of 22 studies met the inclusion criteria, of which only three reported having based their intervention on theory, and all used Social Cognitive Theory. A total of 33 BCTs were coded across all articles with the most commonly identified techniques being '. instruction on how to perform the behaviour', '. demonstration of the behaviour', '. behavioural practice', '. credible source', '. graded tasks' and '. body changes'. Conclusion: Results demonstrate that theoretically driven research within group based self-management programmes for chronic musculoskeletal pain is lacking, or is poorly reported. Future research that follows recommended guidelines regarding the use of theory in study design and reporting is warranted.
Resumo:
INTRODUCTION: Transdermal drug delivery offers a number of advantages for the patient, not only due to its non-invasive and convenient nature, but also due to factors such as avoidance of first-pass metabolism and prevention of gastrointestinal degradation. It has been demonstrated that microneedles (MNs) can increase the number of compounds amenable to transdermal delivery by penetrating the skin's protective barrier, the stratum corneum, and creating a pathway for drug permeation to the dermal tissue below.
AREAS COVERED: MNs have been extensively investigated for drug and vaccine delivery. The different types of MN arrays and their delivery capabilities are discussed in terms of drugs, including biopharmaceutics and vaccines. Patient usage and effects on the skin are also considered.
EXPERT OPINION: MN research and development is now at the stage where commercialisation is a viable possibility. There are a number of long-term safety questions relating to patient usage which will need to be addressed moving forward. Regulatory guidance is awaited to direct the scale-up of the manufacturing process alongside provision of clearer patient instruction for safe and effective use of MN devices.
Resumo:
This paper focuses on quantifying the benefits of pictogram based instructions relative to static images for work instruction delivery. The assembly of a stiffened aircraft panel has been used as an exemplar for the work which seeks to address the challenge of identifying an instructional mode that can be location or language neutral while at the same time optimising assembly build times and maintaining build quality. Key performance parameters measured using a series of panel build experiments conducted by two separate groups were: overall build time, the number of subject references to instructional media, the number of build errors and the time taken to correct any mistakes. Overall build time for five builds for a group using pictogram instructions was about 20% lower than for the group using image based instructions. Also, the pictogram group made fewer errors. Although previous work identified that animated instructions result in optimal build times, the language neutrality of pictograms as well as the fact that they can be used without visualisation hardware mean that, on balance, they have broader applicability in terms of transferring assembly knowledge to the manufacturing environment.
Resumo:
Static timing analysis provides the basis for setting the clock period of a microprocessor core, based on its worst-case critical path. However, depending on the design, this critical path is not always excited and therefore dynamic timing margins exist that can theoretically be exploited for the benefit of better speed or lower power consumption (through voltage scaling). This paper introduces predictive instruction-based dynamic clock adjustment as a technique to trim dynamic timing margins in pipelined microprocessors. To this end, we exploit the different timing requirements for individual instructions during the dynamically varying program execution flow without the need for complex circuit-level measures to detect and correct timing violations. We provide a design flow to extract the dynamic timing information for the design using post-layout dynamic timing analysis and we integrate the results into a custom cycle-accurate simulator. This simulator allows annotation of individual instructions with their impact on timing (in each pipeline stage) and rapidly derives the overall code execution time for complex benchmarks. The design methodology is illustrated at the microarchitecture level, demonstrating the performance and power gains possible on a 6-stage OpenRISC in-order general purpose processor core in a 28nm CMOS technology. We show that employing instruction-dependent dynamic clock adjustment leads on average to an increase in operating speed by 38% or to a reduction in power consumption by 24%, compared to traditional synchronous clocking, which at all times has to respect the worst-case timing identified through static timing analysis.