977 resultados para Efficient Solutions
Resumo:
The literature on pricing implicitly assumes an "infinite data" model, in which sources can sustain any data rate indefinitely. We assume a more realistic "finite data" model, in which sources occasionally run out of data; this leads to variable user data rates. Further, we assume that users have contracts with the service provider, specifying the rates at which they can inject traffic into the network. Our objective is to study how prices can be set such that a single link can be shared efficiently and fairly among users in a dynamically changing scenario where a subset of users occasionally has little data to send. User preferences are modelled by concave increasing utility functions. Further, we introduce two additional elements: a convex increasing disutility function and a convex increasing multiplicative congestion-penally function. The disutility function takes the shortfall (contracted rate minus present rate) as its argument, and essentially encourages users to send traffic at their contracted rates, while the congestion-penalty function discourages heavy users from sending excess data when the link is congested. We obtain simple necessary and sufficient conditions on prices for fair and efficient link sharing; moreover, we show that a single price for all users achieves this. We illustrate the ideas using a simple experiment.
Resumo:
The literature on pricing implicitly assumes an "infinite data" model, in which sources can sustain any data rate indefinitely. We assume a more realistic "finite data" model, in which sources occasionally run out of data. Further, we assume that users have contracts with the service provider, specifying the rates at which they can inject traffic into the network. Our objective is to study how prices can be set such that a single link can be shared efficiently and fairly among users in a dynamically changing scenario where a subset of users occasionally has little data to send. We obtain simple necessary and sufficient conditions on prices such that efficient and fair link sharing is possible. We illustrate the ideas using a simple example
Resumo:
An overview of space-time code construction based on cyclic division algebras (CDA) is presented. Applications of such space-time codes to the construction of codes optimal under the diversity-multiplexing gain (D-MG) tradeoff, to the construction of the so-called perfect space-time codes, to the construction of optimal space-time codes for the ARQ channel as well as to the construction of codes optimal for the cooperative relay network channel are discussed. We also present a construction of optimal codes based on CDA for a class of orthogonal amplify and forward (OAF) protocols for the cooperative relay network
Resumo:
Catalytic amount of vanadium reagent with tert-butylhydroperoxide as the oxidant was found to be an excellent oxidizing agent in aqueous medium. Vanadium pentoxide with aq tert-butylhydroperoxide readily oxidizes primary benzylic azides to the corresponding acids and secondary benzylic azides to the corresponding ketones in excellent yields. Further, vanadium pentoxide and aq tert-butylhydroperoxide combination turned out to be an effective catalyst for the oxidation of alcohols. Using vanadium pentoxide and aq tert-butylhydroperoxide primary alcohols were oxidized to the corresponding acids, whereas secondary alcohols underwent a smooth transformation to furnish corresponding ketones in excellent yields. All the oxidations are performed in water. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Ad hoc networks are being used in applications ranging from disaster recovery to distributed collaborative entertainment applications. Ad hoc networks have become one of the most attractive solution for rapid deployment of interconnecting large number of mobile personal devices. The user community of mobile personal devices are demanding a variety of value added multimedia entertainment services. The popularity of peer group is increasing and one or some members of the peer group need to send data to some or all members of the peer group. The increasing demand for group oriented value added services is driving for efficient multicast service over ad hoc networks. Access control mechanisms need to be deployed to provide guarantee that the unauthorized users cannot access the multicast content. In this paper, we present a topology aware key management and distribution scheme for secure overlay multicast over MANET to address node mobility related issues for multicast key management. We use overlay approach for key distribution and our objective is to keep communication overhead low for key management and distribution. We also incorporate reliability using explicit acknowledgments with the key distribution scheme. Through simulations we show that the proposed key management scheme has low communication overhead for rekeying and improves the reliability of key distribution.
Resumo:
The reversible e.m.f. of galvanic cells: stainlesssteel,Ir,Pb+PbO|CaO+ZrO2|Ag+Pb+PbO,Ir,stainlesssteel,I and Pt,Ni+NiO|CaO+ZrO2|O(Pb+Ag),Cermet,Pt,II incorporating solid oxide electrolytes were measured as a function of alloy composition. In lead-rich alloys, the temperature dependence of the e.m.f. of cell I was also investigated. Since the solubility of oxygen in the alloy is small, the relative partial molar properties of lead in the binary Ag + Pb system can be calculated from the e.m.f. of this cell. The Gibbs free energies obtained in this study are combined with selected calorimetric data to provide a complete thermodynamic discription of liquid Ag + Pb Alloys. The activity coefficient of oxygen in the whole range of Ag + Pb alloys at 1273 K have been obtained from the e.m.f. of cell II; and these are found to deviate positively from Alcock and Richardson's quasichemical equation when the average co-ordination number of all the atoms is assigned a value of 2.
Resumo:
Equations are developed for predicting the activity coefficients of oxygen dissolved in ternary liquid alloys. These are extensions of earlier treatments, and are based on a model in which each oxygen atom is assumed to make four bonds with neighboring metal atoms. It is also postulated that the strong oxygen-metal bonds distort the electronic configuration around the metal atoms bonded to oxygen, and that the quantitative reduction of the strength of bonds made by these atoms with all of the adjacent metal atoms is equivalent to a factor of approximately two. The predictions of the quasichemical equation which is derived agree satisfactorily with the partial molar free energies of oxygen in Ag-Cu-Sn solutions at 1200°C reported in literature. An extension of this treatment to multicomponent solutions is also indicated.
Resumo:
A solid oxide galvanic cell and a gas-solid (View the MathML source) equilibration technique have been used to measure the activities of the solutes in the α-solid solutions of silver with indium and tin. The results are consistent with the information now available for the corresponding liquid alloys, the phase diagram and the heats of mixing of the solid alloy. When the results of this study are taken together with published data for the α-solid solutions in Ag + Cd system, it is found that the variation of the excess partial free energy of the solute with mole fraction can be correlated to the electron/atom ratio. The significant thennodynamic parameter that explains the Hume-Rothery findings in these alloys appears to be the rate of change of the excess partial free energy with composition near the phase boundary, and this in turn reflects the value of the solute-solute interaction energy.
Resumo:
Thin foils of Cu, Au and Cu + Au alloys embedded in indium sesquioxide were equilibrated with controlled streams of CO-CO2 mixtures. The equilibrium concentrations of indium in the foils were determined by neutron activation analysis. The corresponding chemical potentials of indium were calculated from the standard free energies of formation of carbon monoxide, carbon dioxide, and indium oxide. It was found that the size difference between the solute and the solvent does not make significant contributions to the solute—solute interaction energy in the α-phase. The chemical potential of indium at one at.% concentration is 8.6 Kcals more negative in gold than in copper at 900°K. The variation of this chemical potential with alloy composition in Cu + Au system was in good agreement with Alcock and Richardson's quasichemical equation. The agreement is strengthened by the accurate knowledge of the co-ordination number in these substitutional solid solutions from X-ray diffraction studies.
Resumo:
Thin foils of copper, silver and gold were equilibrated with tetragonal GeO2 under controlled View the MathML source gas streams at 1000 K. The equilibrium concentration of germanium in the foils was determined by the X-ray fluorescence technique. The standard free energy of formation of tetragonal GeO2 was measured by a solid oxide galvanic cell. The chemical potential of germanium calculated from the experimental data and the free energies of formation of carbon monoxide and carbon dioxide was found to decrease in the sequence Ag + Ge > Au + Ge > Cu + Ge. The more negative value for the chemical potential of germanium in solid copper, compared to that in solid gold, cannot be explained in terms of the strain energy factor, electro-negativity differences or the vaporization energies of the solvent, and suggests that the d band and its hybridization with s electrons are an important factor in determining the absolute values for the chemical potential in dilute solutions. However, the variation of the chemical potential with solute concentration can be correlated to the concentration of s and p electrons in the outer shell.
Solute solute and solvent solute interactions in solid solutions of Cu+Sn, Au+Sn and Cu+Au+Sn alloys
Resumo:
The chemical potentials of tin in its α-solid solutions with Cu, Au and Cu + Au alloys have been measured using a gas-solid equilibration technique. The variation of the excess chemical potential of tin with its composition in the alloy is related to the solute-solute repulsive interaction, while the excess chemical potential at infinite dilution of the solute is a measure of solvent-solute interaction energies. It is shown that solute-solute interaction is primarily determined by the concentration of (s + p) electrons in the conduction band, although the interaction energies are smaller than those predicted by either the rigid band model or calculation based on Friedel oscillations in the potential function. Finally, the variation of the solvent-solute interaction with solvent composition in the ternary system can be accounted for in terms of a quasi-chemical treatment which takes into account the clustering of the solvent atoms around the solute.
Resumo:
The compositions of the (Mn,Co)O solid solution with rock salt structure in equilibrium with (Mn,Co)Cr2O4 and (Mn,Co)Al2O4 spinel solid solutions have been determined by X-ray diffraction measurements at 1100° C and an oxygen partial pressure of 10–10 atm. The ion exchange equilibria are quantitatively analysed, using values for activities in the (Mn,Co)O solid solution available in the literature, in order to obtain activities in the spinel solid solutions. The MnAl2O4-CoAl2O4 solid solution exhibits negative deviations from Raoult's law, consistent with the estimated cation disorder in the solid solution, while the MnCr2O4-CoCr2O4 solid solution shows slightly positive deviations. The difference in the Gibbs free energy of formation of the two pure chromites and aluminates derived from the results of this study are in good agreement with recent results obtained from solid oxide galvanic cells and gas-equilibrium techniques.
Resumo:
The activity of NiAl2O4 in NiAl2O4MgAl2O4 solid solutions has been measured by using a solid oxide galvanic cell of the type, Pt, Ni + NiAl2O4 + Al2O3(α)/CaOZrO2/Ni + NixMg1−xAl2O4 + Al2O3(α). Pt, in the temperature range 750–1150°C. The activities in the spinel solid solutions show negative deviations from Raoult's law. The cation distribution in the solid solutions has been calculated using site preference energies independent of composition for Ni2+, Mg2+, and Al3+ ions obtained from crystal field theory and measured cation disorder in pure NiAl2O4 and MgAl2O4, and assumi g ideal mixing of cations on the tetrahedral and octahedral positions. The calculated values correctly predict the decrease in the fraction, α, of Ni2+ ions on tetrahedral sites for 1>x>0.25, observed by Porta et al. [J. Solid State Chem.11, 135 (1974)] but do not support their tentative evidence for an increase in α for x < 0.25. The measured excess free energy of mixing can be completely accounted for by using either the calculated or the measured cation distributions. This suggests that the Madelung energy is approximately a linear function of composition in the solid solutions. The composition of NiOMgO solid solutions in equilibrium with NiAl2O4MgAl2O4 solid solutions has been calculated from the results and information available in literature.