971 resultados para Dwarf Elliptic Galaxies
Resumo:
There is a recent trend to describe physical phenomena without the use of infinitesimals or infinites. This has been accomplished replacing differential calculus by the finite difference theory. Discrete function theory was first introduced in l94l. This theory is concerned with a study of functions defined on a discrete set of points in the complex plane. The theory was extensively developed for functions defined on a Gaussian lattice. In 1972 a very suitable lattice H: {Ci qmxO,I qnyo), X0) 0, X3) 0, O < q < l, m, n 5 Z} was found and discrete analytic function theory was developed. Very recently some work has been done in discrete monodiffric function theory for functions defined on H. The theory of pseudoanalytic functions is a generalisation of the theory of analytic functions. When the generator becomes the identity, ie., (l, i) the theory of pseudoanalytic functions reduces to the theory of analytic functions. Theugh the theory of pseudoanalytic functions plays an important role in analysis, no discrete theory is available in literature. This thesis is an attempt in that direction. A discrete pseudoanalytic theory is derived for functions defined on H.
Resumo:
In dieser Arbeit werden zwei Aspekte bei Randwertproblemen der linearen Elastizitätstheorie untersucht: die Approximation von Lösungen auf unbeschränkten Gebieten und die Änderung von Symmetrieklassen unter speziellen Transformationen. Ausgangspunkt der Dissertation ist das von Specovius-Neugebauer und Nazarov in "Artificial boundary conditions for Petrovsky systems of second order in exterior domains and in other domains of conical type"(Math. Meth. Appl. Sci, 2004; 27) eingeführte Verfahren zur Untersuchung von Petrovsky-Systemen zweiter Ordnung in Außenraumgebieten und Gebieten mit konischen Ausgängen mit Hilfe der Methode der künstlichen Randbedingungen. Dabei werden für die Ermittlung von Lösungen der Randwertprobleme die unbeschränkten Gebiete durch das Abschneiden mit einer Kugel beschränkt, und es wird eine künstliche Randbedingung konstruiert, um die Lösung des Problems möglichst gut zu approximieren. Das Verfahren wird dahingehend verändert, dass das abschneidende Gebiet ein Polyeder ist, da es für die Lösung des Approximationsproblems mit üblichen Finite-Element-Diskretisierungen von Vorteil sei, wenn das zu triangulierende Gebiet einen polygonalen Rand besitzt. Zu Beginn der Arbeit werden die wichtigsten funktionalanalytischen Begriffe und Ergebnisse der Theorie elliptischer Differentialoperatoren vorgestellt. Danach folgt der Hauptteil der Arbeit, der sich in drei Bereiche untergliedert. Als erstes wird für abschneidende Polyedergebiete eine formale Konstruktion der künstlichen Randbedingungen angegeben. Danach folgt der Nachweis der Existenz und Eindeutigkeit der Lösung des approximativen Randwertproblems auf dem abgeschnittenen Gebiet und im Anschluss wird eine Abschätzung für den resultierenden Abschneidefehler geliefert. An die theoretischen Ausführungen schließt sich die Betrachtung von Anwendungsbereiche an. Hier werden ebene Rissprobleme und Polarisationsmatrizen dreidimensionaler Außenraumprobleme der Elastizitätstheorie erläutert. Der letzte Abschnitt behandelt den zweiten Aspekt der Arbeit, den Bereich der Algebraischen Äquivalenzen. Hier geht es um die Transformation von Symmetrieklassen, um die Kenntnis der Fundamentallösung der Elastizitätsprobleme für transversalisotrope Medien auch für Medien zu nutzen, die nicht von transversalisotroper Struktur sind. Eine allgemeine Darstellung aller Klassen konnte hier nicht geliefert werden. Als Beispiel für das Vorgehen wird eine Klasse von orthotropen Medien im dreidimensionalen Fall angegeben, die sich auf den Fall der Transversalisotropie reduzieren lässt.
Resumo:
Bildbasierte Authentifizierung und Verschlüsselung: Identitätsbasierte Kryptographie (oft auch identity Based Encryption, IBE) ist eine Variation der asymmetrischen Schlüsselverfahren, bei der der öffentliche Schlüssel des Anwenders eine beliebig wählbare Zeichenfolge sein darf, die dem Besitzer offensichtlich zugeordnet werden kann. Adi Shamir stellte 1984 zunächst ein solches Signatursystem vor. In der Literatur wird dabei als öffentlicher Schlüssel meist die Email-Adresse oder eine Sozialversicherungsnummer genannt. Der Preis für die freie Schlüsselwahl ist die Einbeziehung eines vertrauenswürdigen Dritten, genannt Private Key Generator, der mit seinem privaten Generalschlüssel den privaten Schlüssel des Antragstellers generiert. Mit der Arbeit von Boneh und Franklin 2001 zum Einsatz der Weil-Paarbildung über elliptischen Kurven wurde IBE auf eine sichere und praktikable Grundlage gestellt. In dieser Arbeit wird nach einer allgemeinen Übersicht über Probleme und Lösungsmöglichkeiten für Authentifizierungsaufgaben im zweiten Teil als neue Idee der Einsatz eines Bildes des Anwenders als öffentlicher Schlüssel vorgeschlagen. Dazu wird der Ablauf der Schlüsselausgabe, die Bestellung einer Dienstleistung, z. B. die Ausstellung einer personengebundenen Fahrkarte, sowie deren Kontrolle dargestellt. Letztere kann offline auf dem Gerät des Kontrolleurs erfolgen, wobei Ticket und Bild auf dem Handy des Kunden bereitliegen. Insgesamt eröffnet sich dadurch die Möglichkeit einer Authentifizierung ohne weitere Preisgabe einer Identität, wenn man davon ausgeht, dass das Bild einer Person angesichts allgegenwärtiger Kameras sowieso öffentlich ist. Die Praktikabilität wird mit einer Implementierung auf der Basis des IBE-JCA Providers der National University of Ireland in Maynooth demonstriert und liefert auch Aufschluss auf das in der Praxis zu erwartende Laufzeitverhalten.
Resumo:
In dieser Arbeit werden nichtüberlappende Gebietszerlegungsmethoden einerseits hinsichtlich der zu lösenden Problemklassen verallgemeinert und andererseits in bisher nicht untersuchten Kontexten betrachtet. Dabei stehen funktionalanalytische Untersuchungen zur Wohldefiniertheit, eindeutigen Lösbarkeit und Konvergenz im Vordergrund. Im ersten Teil werden lineare elliptische Dirichlet-Randwertprobleme behandelt, wobei neben Problemen mit dominantem Hauptteil auch solche mit singulärer Störung desselben, wie konvektions- oder reaktionsdominante Probleme zugelassen sind. Der zweite Teil befasst sich mit (gleichmäßig) monotonen koerziven quasilinearen elliptischen Dirichlet-Randwertproblemen. In beiden Fällen wird das Lipschitz-Gebiet in endlich viele Lipschitz-Teilgebiete zerlegt, wobei insbesondere Kreuzungspunkte und Teilgebiete ohne Außenrand zugelassen sind. Anschließend werden Transmissionsprobleme mit frei wählbaren $L^{\infty}$-Parameterfunktionen hergeleitet, wobei die Konormalenableitungen als Funktionale auf geeigneten Funktionenräumen über den Teilrändern ($H_{00}^{1/2}(\Gamma)$) interpretiert werden. Die iterative Lösung dieser Transmissionsprobleme mit einem Ansatz von Deng führt auf eine Substrukturierungsmethode mit Robin-artigen Transmissionsbedingungen, bei der eine Auswertung der Konormalenableitungen aufgrund einer geschickten Aufdatierung der Robin-Daten nicht notwendig ist (insbesondere ist die bekannte Robin-Robin-Methode von Lions als Spezialfall enthalten). Die Konvergenz bezüglich einer partitionierten $H^1$-Norm wird für beide Problemklassen gezeigt. Dabei werden keine über $H^1$ hinausgehende Regularitätsforderungen an die Lösungen gestellt und die Gebiete müssen keine zusätzlichen Glattheitsvoraussetzungen erfüllen. Im letzten Kapitel werden nichtmonotone koerzive quasilineare Probleme untersucht, wobei das Zugrunde liegende Gebiet nur in zwei Lipschitz-Teilgebiete zerlegt sein soll. Das zugehörige nichtlineare Transmissionsproblem wird durch Kirchhoff-Transformation in lineare Teilprobleme mit nichtlinearen Kopplungsbedingungen überführt. Ein optimierungsbasierter Lösungsansatz, welcher einen geeigneten Abstand der rücktransformierten Dirichlet-Daten der linearen Teilprobleme auf den Teilrändern minimiert, führt auf ein optimales Kontrollproblem. Die dabei entstehenden regularisierten freien Minimierungsprobleme werden mit Hilfe eines Gradientenverfahrens unter minimalen Glattheitsforderungen an die Nichtlinearitäten gelöst. Unter zusätzlichen Glattheitsvoraussetzungen an die Nichtlinearitäten und weiteren technischen Voraussetzungen an die Lösung des quasilinearen Ausgangsproblems, kann zudem die quadratische Konvergenz des Newton-Verfahrens gesichert werden.
Resumo:
Diese Arbeit beschäftigt sich mit der Frage, wie sich in einer Familie von abelschen t-Moduln die Teilfamilie der uniformisierbaren t-Moduln beschreiben lässt. Abelsche t-Moduln sind höherdimensionale Verallgemeinerungen von Drinfeld-Moduln über algebraischen Funktionenkörpern. Bekanntermaßen lassen sich Drinfeld-Moduln in allgemeiner Charakteristik durch analytische Tori parametrisieren. Diese Tatsache überträgt sich allerdings nur auf manche t-Moduln, die man als uniformisierbar bezeichnet. Die Situation hat eine gewisse Analogie zur Theorie von elliptischen Kurven, Tori und abelschen Varietäten über den komplexen Zahlen. Um zu entscheiden, ob ein t-Modul in diesem Sinne uniformisierbar ist, wendet man ein Kriterium von Anderson an, das die rigide analytische Trivialität der zugehörigen t-Motive zum Inhalt hat. Wir wenden dieses Kriterium auf eine Familie von zweidimensionalen t-Moduln vom Rang vier an, die von Koeffizienten a,b,c,d abhängen, und gelangen dabei zur äquivalenten Fragestellung nach der Konvergenz von gewissen rekursiv definierten Folgen. Das Konvergenzverhalten dieser Folgen lässt sich mit Hilfe von Newtonpolygonen gut untersuchen. Schließlich erhält man durch dieses Vorgehen einfach formulierte Bedingungen an die Koeffizienten a,b,c,d, die einerseits die Uniformisierbarkeit garantieren oder andererseits diese ausschließen.
Resumo:
Course notes for the Numerical Methods course (joint MATH3018 and MATH6111). Originally by Giampaolo d'Alessandro, modified by Ian Hawke. These contain only minimal examples and are distributed as is; examples are given in the lectures.
Resumo:
El objetivo de este documento es recopilar algunos resultados clasicos sobre existencia y unicidad ´ de soluciones de ecuaciones diferenciales estocasticas (EDEs) con condici ´ on final (en ingl ´ es´ Backward stochastic differential equations) con particular enfasis en el caso de coeficientes mon ´ otonos, y su cone- ´ xion con soluciones de viscosidad de sistemas de ecuaciones diferenciales parciales (EDPs) parab ´ olicas ´ y el´ıpticas semilineales de segundo orden.
Resumo:
We consider a class of boundary integral equations that arise in the study of strongly elliptic BVPs in unbounded domains of the form $D = \{(x, z)\in \mathbb{R}^{n+1} : x\in \mathbb{R}^n, z > f(x)\}$ where $f : \mathbb{R}^n \to\mathbb{R}$ is a sufficiently smooth bounded and continuous function. A number of specific problems of this type, for example acoustic scattering problems, problems involving elastic waves, and problems in potential theory, have been reformulated as second kind integral equations $u+Ku = v$ in the space $BC$ of bounded, continuous functions. Having recourse to the so-called limit operator method, we address two questions for the operator $A = I + K$ under consideration, with an emphasis on the function space setting $BC$. Firstly, under which conditions is $A$ a Fredholm operator, and, secondly, when is the finite section method applicable to $A$?
Resumo:
Twenty-five small soil-filled perspex boxes arranged in a square, with dwarf sunflowers growing in them, were used to study micro-scale advection. Hydrological heterogeneity was introduced by applying two different amounts of irrigation water (low-irrigation, L, versus high-irrigation, H). The nine central boxes (4 H, 4 L and I bare box) were precision weighing lysimeters, yielding diurnal measurements of evaporation. After the onset of soil water stress, a large difference in latent heat flux (up to 4-fold) was observed between the lysimeters of the H and L treatments, mainly caused by large differences between H and L stomatal conductance values. This resulted in micro-advection, causing H soil-sunflower systems to evaporate well above equilibrium latent heat flux. The occurrence of micro-advective enhancement was reflected in large values of the Priestley-Taylor constant (often larger than 2.0) and generally negative values of sensible heat flux for the H treatment. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
These notes have been issued on a small scale in 1983 and 1987 and on request at other times. This issue follows two items of news. First, WaIter Colquitt and Luther Welsh found the 'missed' Mersenne prime M110503 and advanced the frontier of complete Mp-testing to 139,267. In so doing, they terminated Slowinski's significant string of four consecutive Mersenne primes. Secondly, a team of five established a non-Mersenne number as the largest known prime. This result terminated the 1952-89 reign of Mersenne primes. All the original Mersenne numbers with p < 258 were factorised some time ago. The Sandia Laboratories team of Davis, Holdridge & Simmons with some little assistance from a CRAY machine cracked M211 in 1983 and M251 in 1984. They contributed their results to the 'Cunningham Project', care of Sam Wagstaff. That project is now moving apace thanks to developments in technology, factorisation and primality testing. New levels of computer power and new computer architectures motivated by the open-ended promise of parallelism are now available. Once again, the suppliers may be offering free buildings with the computer. However, the Sandia '84 CRAY-l implementation of the quadratic-sieve method is now outpowered by the number-field sieve technique. This is deployed on either purpose-built hardware or large syndicates, even distributed world-wide, of collaborating standard processors. New factorisation techniques of both special and general applicability have been defined and deployed. The elliptic-curve method finds large factors with helpful properties while the number-field sieve approach is breaking down composites with over one hundred digits. The material is updated on an occasional basis to follow the latest developments in primality-testing large Mp and factorising smaller Mp; all dates derive from the published literature or referenced private communications. Minor corrections, additions and changes merely advance the issue number after the decimal point. The reader is invited to report any errors and omissions that have escaped the proof-reading, to answer the unresolved questions noted and to suggest additional material associated with this subject.
Resumo:
Accuracy and mesh generation are key issues for the high-resolution hydrodynamic modelling of the whole Great Barrier Reef. Our objective is to generate suitable unstructured grids that can resolve topological and dynamical features like tidal jets and recirculation eddies in the wake of islands. A new strategy is suggested to refine the mesh in areas of interest taking into account the bathymetric field and an approximated distance to islands and reefs. Such a distance is obtained by solving an elliptic differential operator, with specific boundary conditions. Meshes produced illustrate both the validity and the efficiency of the adaptive strategy. Selection of refinement and geometrical parameters is discussed. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We study certain boundary value problems for the one-dimensional wave equation posed in a time-dependent domain. The approach we propose is based on a general transform method for solving boundary value problems for integrable nonlinear PDE in two variables, that has been applied extensively to the study of linear parabolic and elliptic equations. Here we analyse the wave equation as a simple illustrative example to discuss the particular features of this method in the context of linear hyperbolic PDEs, which have not been studied before in this framework.
Resumo:
The first haploid angiosperm, a dwarf form of cotton with half the normal chromosome complement, was discovered in 1920, and in the ninety years since then such plants have been identified in many other species. They can occur either spontaneously or can be induced by modified pollination methods in vivo, or by in vitro culture of immature male or female gametophytes. Haploids represent an immediate, one-stage route to homozygous diploids and thence to F(1) hybrid production. The commercial exploitation of heterosis in such F(1) hybrids leads to the development of hybrid seed companies and subsequently to the GM revolution in agriculture. This review describes the range of techniques available for the isolation or induction of haploids and discusses their value in a range of areas, from fundamental research on mutant isolation and transformation, through to applied aspects of quantitative genetics and plant breeding. It will also focus on how molecular methods have been used recently to explore some of the underlying aspects of this fascinating developmental phenomenon.
Resumo:
The incidence-severity relationship for cashew gummosis, caused by Lasiodiplodia theobromae, was studied to determine the feasibility of using disease incidence to estimate indirectly disease severity in order to establish the potential damage caused by this disease in semiarid north-eastern Brazil. Epidemics were monitored in two cashew orchards, from 1995 to 1998 in an experimental field composed of 28 dwarf clones, and from 2000 to 2002 in a commercial orchard of a single clone. The two sites were located 10 km from each other. Logarithmic transformation achieved the best linear adjustment of incidence and severity data as determined by coefficients of determination for place, age and pooled data. A very high correlation between incidence and severity was found in both fields, with different disease pressures, different cashew genotypes, different ages and at several epidemic stages. Thus, the easily assessed gummosis incidence could be used to estimate gummosis severity levels.
Resumo:
Compensatory population dynamics among species stabilise aggregate community variables. Inter-specific competition is thought to be stabilising as it promotes asynchrony among populations. However, we know little about other inter-specific interactions, such as facilitation and granivory. Such interactions are also likely to influence population synchrony and community stability, especially in harsh environments where they are thought to have relatively strong effects in plant communities. We use a manipulative experiment to test the effects of granivores (harvester ants) and nurse plants (dwarf shrubs) on annual plant community dynamics in the Negev desert, Israel. We present evidence for weak and inconsistent effects of harvester ants on plant abundance and on population and community stability. By contrast, we show that annual communities under shrubs were more species rich, had higher plant density and were temporally less variable than communities in the inter-shrub matrix. Species richness and plant abundance were also more resistant to drought in the shrub under-storey compared with the inter-shrub matrix, although population dynamics in both patch types were synchronised. Hence, we show that inter-specific interactions other than competition affect community stability, and that hypothesised mechanisms linking compensatory dynamics and community stability may not operate to the same extent in arid plant communities.