996 resultados para Dry Surfaces.
Resumo:
We present measurements of the transverse and longitudinal coherence lengths of the fourth harmonic of a 1053-nm, 2.5-ps laser generated during high-intensity (up to 10(19) W cm(-2)) interactions with a solid target. Coherence lengths were measured by use of a Young's double-slit interferometer. The effective source size, as defined by the Van Cittert-Zernicke theorem, was found to be 10-12 mu m, and the coherence time was observed to be in the range 0.02-0.4 ps.
Resumo:
Radiation biophysics has sought to understand at a molecular level, the mechanisms through which ionizing radiations damage DNA, and other molecules within living cells. The complexity of lesions produced in the DNA by ionizing radiations is thought to depend on the amount of energy deposited at the site of each lesion. To study the relationship between the energy deposited and the damage produced, we have developed novel techniques for irradiating dry prasmid DNA, partially re-hydrated DNA and DNA in solution using monochromatic vacuum-UV synchrotron radiation. We have used photons in the energy range 7-150 eV, corresponding to the range of energies typically involved in the efficient production of DNA single-strand (SSB), and double-strand breaks (DSB) by ionizing radiation. The data show that both types of breaks are produced at all energies investigated (with, or without water present). Also, the energy dependence for DSB induction follows a similar trend to SSB induction but at a 20-30-fold reduced incidence, suggesting a common precursor for both types of damage. Preliminary studies where DNA has been irradiated in solution indicate a change in the shape of the dose-effect curve (from linear, to linear-quadratic for double-strand break induction) and a large increase in sensitivity due to the presence of water.
Resumo:
Purpose: Theoretical modelling techniques are often used to simulate the action of ionizing radiations on cells at the nanometre level, Using monoenergetic vacuum-UV (VUV) radiation to irradiate DNA either dry or humidified, the action spectra for the induction of DNA damage by low energy photons and the role of water and can be studied. These data provide inputs for the theoretical models.
Resumo:
Simple pictures under everyday viewing conditions evoke impressions of surfaces oriented in depth. These impressions have been studied by measuring the slants of perceived surfaces, with probes (rotating arrowheads) designed to respect the distinctive character of depicted scenes. Converging arguments indicated that the perceived orientation of the probes was near theoretical values. A series of experiments showed that subjects formed well-defined impressions of depicted surface orientation. The literature suggests that perceived objects might be flattened', but that was not the general rule. Instead, both mean slant and uncertainty fitted models in which slant estimates are derived in a relatively straightforward way from local relations in the picture. Simplifying pictures tended to make orientation estimates less certain, particularly away from the natural anchor points (vertical and horizontal). The shape of the object affected all aspects of the observed-object/percept relationship. Individual differences were large, and suggest that different individuals used different relationships as a basis for their estimates. Overall, data suggest that everyday picture perception is strongly selective and weakly integrative. In particular, depicted slant is estimated by finding a picture feature which will be strongly related to it if the object contains a particular regularity, not by additive integration of evidence from multiple directly and indirectly relevant sources.
Resumo:
We demonstrate a combined magneto-optical trap and imaging system that is suitable for the investigation of cold atoms near surfaces. In particular, we are able to trap atoms close to optically scattering surfaces and to image them with an excellent signal-to-noise ratio. We also demonstrate a simple magneto-optical atom cloud launching method. We anticipate that this system will be useful for a range of experimental studies of novel atom-surface interactions and atom trap miniaturization.
Resumo:
A groundwater programme monitoring flow and quality of a potable water spring in a slum district in Kampala, Uganda revealed that although latrines acted as the principal means of organic waste disposal for the 1000 plus people living in the spring’s catchment, levels of faecal indicator bacteria (TVC 45 Deg C) in spring discharge remained at or below detection during the dry season, despite the presence of high levels of chloride (45mg/l-56mg/l) and nitrate (23mg/l – 30mg/l NO3-N), indicating sewage impacts. A programme of column and batch testing of laterite underlying the area provided a means of investigating the soil’s attenuation capacity under more controlled conditions.
X-ray diffraction analyses revealed the laterite to be dominated by quartz and kaolinite with minor (<5% by volume) quantities of haematite. Batch studies revealed that over 99% of bacteriophage adsorbed to haematite in less than 5 minutes. By contrast batch tests on haematite-free soil samples from the Blue Hills in Australia showed that although they had comparable dominant mineralogy and iron coverage on their surfaces (determined from Energy dispersive X-ray fluorescence) they had negligible ability to adsorb H40/1.
Based on the results of the batch studies using natural soils, a programme of batch studies, undertaken using pure haematite showed the mineral to have an extremely high capacity to adsorb bacteriophage, and suggested that it was responsible for the levels of attenuation observed.
The results of column studies were in keeping with the findings of batch experiments. Injection of 20 pore volumes of 300 pfu/mL of the bacteriophage H40/1 into a 20mm diameter glass column packed with sand sized (Ø>500µm) laterite revealed that the column could irreversibly remove over 2.5 log10 bacteriophage over its 10cm length.
Importance:
Mineralogical and batch test data provide convincing evidence to show that laterite can potentially act as an inexpensive means of removing micro organisms from water. The material, particularly in nodular form, displays considerable potential to act as an alternative filter material to conventional quartz filter sands.
Resumo:
Studies demonstrate the active and passive capability of lichens to inhibit or retard the weathering of calcareous surfaces. Lichen coverage may actively protect a surface through shielding by the thallus and the binding and waterproofing of the rock surface and subsurface by fungal hyphae. Passive protection of rock surfaces may be induced by the formation of an insoluble encrustation, such as calcium oxalate, at the lichen-rock interface. Recent research suggests that the decay of hyphae, induced by changes in microenvironmental conditions, necrosis, parasitism or the natural physiological traits of particular lichen species, may expose a chemically and physically weakened substrate to dissolution triggering relatively rapid weathering-related surface lowering. Consequently, certain epilithic crustose and endolithic lichens may induce a period of surface stability throughout the course of their lifespan, followed by a phase of instability and rapid episodic microtopographical evolution after death and decay. A series of conceptual models is proposed to illustrate this idea over short (single lichen lifespan) and long (multiple lichen lifespans) timescales. The models suggest that the microscale biogeomorphological system of lichen-rock interaction is underpinned by nonlinear dynamical system theory as it exhibits dynamical instability and is consequently difficult to predict over a long timescale. Dominance by biodeterioration or bioprotection may be altered by changes in lichen species or in environmental conditions over time.