988 resultados para Divalent metal transporter-1


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deformation dynamics of metal foils (<0.25 mm thick) subjected to micro-blast wave are presented in this paper. The energy of micro-blast wave emanating from the open end of a polymer tube is used to deliver micro-particles for bio-medical applications. In these experiments metal foils are used to transfer the energy of the micro-blast wave to the micro-particles. Using cubic root scaling law the over pressure of the blast wave at the open end of the polymer tube is estimated and using this peak plate over pressure is estimated. The finite element analysis is used to estimate the velocity profile of the deforming metal foils. The finite element analysis results are compared with experimental results for the maximum deformation and deformed shape. Based on the deformation velocity, metal foil to be used for experiments is selected. Among the materials investigated 0.1 mm thick brass foil has the maximum velocity of 205 m/s and is used in the experiments. It is found from finite element analysis that the particles deposited within a radius of 0.5 mm will leave the foil with nearly equal velocity (error < 5%). The spray cone angle which is the angle of deviation of the path of particles from the axis of the polymer tube is also estimated and found to be less than 7 degrees up to a radius of 0.75 mm. Illustrative experiments are carried out to deliver micro particles (0.7 mu m diameter tungsten) into plant tissues. Particle penetration depth up to 460 mu m was achieved in ground tissue of potato tuber. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mixed-metal metal-organic framework (MOF) compound NiMn2{C6H3(COO)(3)}(2)], I, is prepared hydrothermally by replacing one of the octahedral Mn2+ ions in Mn-3{C6H3(COO)(3)}(2)] by Ni2+ ions. Magnetic studies on I suggest antiferromagnetic interactions with weak canted antiferromagnetism below 8 K. On heating in flowing air I transforms to NiMn2O4 spinel at low temperature (T < 400 degrees C). The thermal decomposition of I at different temperatures results in NiMn2O4 with particle sizes in the nano regime. The nanoparticle nature of NiMn2O4 was confirmed using PXRD and TEM studies. Magnetic studies on the nanoparticles of NiMn2O4 indicate ferrimagnetism. The transition temperature of NiMn2O4 nanoparticles exhibits a direct correlation with the particle size. This study highlights the usefulness of MOF compound as a single-source precursor for the preparation of important ceramic oxides with better control on the stoichiometry and particle size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal-ion (Ag, Co, Ni, and Pd) doped TiO2 nanocatalysts were successfully embedded on carbon-covered alumina supports. The CCA-embedded catalysts were crystalline and had a high surface area compared to the free metal-ion doped titania nanocatalysts while they still retained the anatase phase of the core TiO2. These catalysts were photocatalytically active under solar light irradiation. Rhodamine B was used as a model pollutant and the reactivity followed a pseudo-first-order reaction kinetics. The reaction rate of the CCA-supported catalysts was Pd > Ag > Co > Ni. Among the ratios of the CCA:catalyst used, it was found that the 1:1 ratio had the fastest reaction rate, followed by the 1:2 ratio, while the 2:1 ratio exhibited the lowest reaction rate. The CCA/metal-ion doped titania were found to have photocatalytic activities comparable with those of CCA-supported titania.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an effort to develop new MOCVD precursors, mixed-ligand metal-organic complexes, bis (acetylacetonato-k(2)O,O') (2,2'-bipyridine-k(2)N,N') magnesium(II), and his (acetylacetonato-k(2)O,O') (1,10-phenanthroline-k(2)N,N') magnesium(II) were synthesized. Spectroscopic characterization and crystal structures confirmed them to be monomeric and stable complexes. Crystal structure analysis suggests in each of the magnesium(II) complexes, the metal center has a distorted octahedral coordination geometry. Thermo-gravimetric analysis (TGA/DTA) suggests that these complexes are volatile and thermally stable. The thermal characteristics of newly designed complexes make them attractive precursors for MOCVD applications. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionic polymer metal composites (IPMC) are a new class of smart materials that have attractive characteristics such as muscle like softness, low voltage and power consumption, and good performance in aqueous environments. Thus, IPMC’s provide promising application for biomimetic fish like propulsion systems. In this paper, we design and analyze IPMC underwater propulsor inspired from swimming of Labriform fishes. Different fish species in nature are source of inspiration for different biomimetic flapping IPMC fin design. Here, three fish species with high performance flapping pectoral fin locomotion is chosen and performance analysis of each fin design is done to discover the better configurations for engineering applications. In order to describe the behavior of an active IPMC fin actuator in water, a complex hydrodynamic function is used and structural model of the IPMC fin is obtained by modifying the classical dynamic equation for a slender beam. A quasi-steady blade element model that accounts for unsteady phenomena such as added mass effects, dynamic stall, and the cumulative Wagner effect is used to estimate the hydrodynamic performance of the flapping rectangular shape fin. Dynamic characteristics of IPMC actuated flapping fins having the same size as the actual fins of three different fish species, Gomphosus varius, Scarus frenatus and Sthethojulis trilineata, are analyzed with numerical simulations. Finally, a comparative study is performed to analyze the performance of three different biomimetic IPMC flapping pectoral fins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proton-conducting materials are an important component of fuel cells. Development of new types of proton-conducting materials is one of the most important issues in fuel-cell technology. Herein, we present newly developed proton-conducting materials, modularly built porous solids, including coordination polymers (CPs) or metalorganic frameworks (MOFs). The designable and tunable nature of the porous materials allows for fast development in this research field. Design and synthesis of the new types of proton-conducting materials and their unique proton-conduction properties are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report a novel piezoelectric ZnO nanogenerator on flexible metal alloy substrate (Phynox alloy) for energy harvesting and sensing applications. The vertically aligned ZnO nanowires are sandwiched between Au electrodes. The aligned growth of ZnO nanowires have been successfully synthesized on Au coated metal alloy substrate by hydrothermal method at low temperature (95 +/- 1 degrees C). The as-synthesized vertically aligned ZnO nanowires were characterized using FE-SEM. Further, PMMA is spin coated over the aligned ZnO nanowires for the purpose of their long term stability. The fabricated nanogenerator is of size 30mm x 6mm. From energy harvesting point of view, the response of the nanogenerator due to finger tip impacts ranges from 0.9 V to 1.4V. Also for sensing application, the maximum output voltage response of the nanogenerator is found to be 2.86V due to stainless steel (SS) ball impact and 0.92 V due to plastic ball impact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accidental spills and improper disposal of industrial effluent/sludge containing heavy metals onto the open land or into subsurface result in soil and water contamination. Detailed investigations are carried out to identify the source of contamination of heavy metals in an industrial suburb near Bangalore in India. Detailed investigation of ground water and subsurface soil analysis for various heavy metals has been carried out. Ground water samples were collected in the entire area through the cluster of borewells. Subsurface soil samples were collected from near borewells which were found to contain heavy metals. Water samples and soils samples (after acid digestion) were analysed as per APHO-standard method of analysis. While the results of Zn, Ni and Cd showed that they are within allowable limits in the soil, the ground water and soils in the site have concentration of Cr+6 far exceeding the allowable limits (up to 832 mg/kg). Considering the topography of the area, ground water movement and results of chromium concentration in the borewells and subsurface it was possible to identify the origin, zone of contamination and the migration path of Cr+6. The results indicated that the predominant mechanism of migration of Cr+6 is by diffusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the selective sensing of multiple transition metal ions in water using a synthetic single probe. The probe is made up of pyrene and pyridine as signaling and interacting moiety, respectively. The sensor showed different responses toward metal ions just by varying the medium of detection. In organic solvent (acetonitrile), the probe showed selective detection of Hg2+ ion. In water, the fluorescence quenching was observed with three metal ions, Cu2+, Hg2+, and Ni2+. Further, just by varying the surface charge on the micellar aggregates, the probe could detect and discriminate the above-mentioned three different toxic metal ions appropriately. In neutral micelles (Brij 58), the probe showed a selective interaction with Hg2+ ion as observed in acetonitrile medium. However, in anionic micellar medium (sodium dodecyl sulfate, SDS), the probe showed changes with both Cu2+ and Ni2+. under UV-vis absorption spectroscopy. The discrimination between these two ions was achieved by recording their emission spectra, where it showed selective quenching with Cu2+.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the mechanical properties of a framework structure, Cu2F(HF)(HF2)(pyz)(4)](SbF6)(2)](n) (pyz = pyrazine), in which Cu(pyz)(2)](2+) layers are pillared by HF2- anions containing the exceptionally strong F-H center dot center dot center dot F hydrogen bonds. Nanoindentation studies on single-crystals clearly demonstrate that such bonds are extremely robust and mechanically comparable with coordination bonds in this system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the objective of investigating the direct conversion of inorganic carbonates such as CaCO3 to hydrocarbons, assisted by transition metal ions, we have carried out studies on CaCO3 in an intimate admixture with iron oxides (FeCaCO) with a wide range of Fe/Ca mole ratios (x), prepared by co-precipitation. The hydrogen reduction of FeCaCO at 673 K gives up to 23% yield of the hydrocarbons CH4, C2H4, C2H6 and C3H8, leaving solid iron residues in the form of iron metal, oxides and carbide particles. The yield of hydrocarbons increases with x and the conversion of hydrocarbons occurs through the formation of CO. While the total yield of hydrocarbons obtained by us is comparable to that in the Fischer-Tropsch synthesis, the selectivity for C-2-C-3 hydrocarbons reported here is noteworthy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We theoretically analyze the performance of transition metal dichalcogenide (MX2) single wall nanotube (SWNT) surround gate MOSFET, in the 10 nm technology node. We consider semiconducting armchair (n, n) SWNT of MoS2, MoSe2, WS2, and WSe2 for our study. The material properties of the nanotubes are evaluated from the density functional theory, and the ballistic device characteristics are obtained by self-consistently solving the Poisson-Schrodinger equation under the non-equilibrium Green's function formalism. Simulated ON currents are in the range of 61-76 mu A for 4.5 nm diameter MX2 tubes, with peak transconductance similar to 175-218 mu S and ON/OFF ratio similar to 0.6 x 10(5)-0.8 x 10(5). The subthreshold slope is similar to 62.22 mV/decade and a nominal drain induced barrier lowering of similar to 12-15 mV/V is observed for the devices. The tungsten dichalcogenide nanotubes offer superior device output characteristics compared to the molybdenum dichalcogenide nanotubes, with WSe2 showing the best performance. Studying SWNT diameters of 2.5-5 nm, it is found that increase in diameter provides smaller carrier effective mass and 4%-6% higher ON currents. Using mean free path calculation to project the quasi-ballistic currents, 62%-75% reduction from ballistic values in drain current in long channel lengths of 100, 200 nm is observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gd2O3-based metal-insulator-metal capacitors have been characterized with single layer (Gd2O3) and bilayer (Gd2O3/Eu2O3 and Eu2O3/Gd2O3) stacks for analog and DRAM applications. Although single layer Gd2O3 capacitors provide highest capacitance density (15 fF/mu m(2)), they suffer from high leakage current density, poor capacitance density-voltage linearity, and reliability. The stacked dielectrics help to reduce leakage current density (1.2x10(-5) A/cm(2) and 2.7 x 10(-5) A/cm(2) for Gd2O3/Eu2O3 and Eu2O3/Gd2O3, respectively, at -1 V), improve quadratic voltage coefficient of capacitance (331 ppm/V-2 and 374 ppm/V-2 for Gd2O3/Eu2O3 and Eu2O3/Gd2O3, respectively, at 1 MHz), and improve reliability, with a marginal reduction in capacitance density. This is attributed to lower trap heights as determined from Poole-Frenkel conduction mechanism, and lower defect density as determined from electrode polarization model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the synthesis, crystal structures, and optical absorption spectra of transition metal substituted spiroffite derivatives, Zn2-xMxTe3O8 (M-II = Co, Ni, Cu; 0 < x <= 1.0). The oxides are readily synthesized by solid state reaction of stoichiometric mixtures of the constituent binaries at 620 degrees C. Reitveld refinement of the crystal structures from powder X-ray diffraction (XRD) data shows that the Zn/MO6 octahedra are strongly distorted, as in the parent Zn2Te3O8 structure, consisting of five relatively short Zn/M-II-O bonds (1.898-2.236 angstrom) and one longer Zn/M-II-O bond (2.356-2.519 angstrom). We have interpreted the unique colors and the optical absorption/diffuse reflectance spectra of Zn2-xMxTe3O8 in the visible, in terms of the observed/irregular coordination geometry of the Zn/M-II-O chromophores. We could not however prepare the fully substituted M2Te3O8 (M-II = Co, Ni, Cu) by the direct solid state reaction method. Density Functional Theory (DFT) modeling of the electronic structure of both the parent and the transition metal substituted derivatives provides new insights into the bonding and the role of transition metals toward the origin of color in these materials. We believe that transition metal substituted spiroffites Zn2-xMxTe3O8 reported here suggest new directions for the development of colored inorganic materials/pigments featuring irregular/distorted oxygen coordination polyhedra around transition metal ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal-doped anatase nanosized titania photocatalysts were successfully synthesized using a sal gel process. Different amounts of the dopants (0.2, 0.4, 0.6, 0.8 and 1.0%) of the metals (Ag, Ni, Co and Pd) were utilized. The UV-Vis spectra (solid state diffuse reflectance spectra) of the doped nanoparticles exhibited a red shift in the absorption edge as a result of metal doping. The metal-doped nanoparticles were investigated for their photocatalytic activity under visible-light irradiation using Rhodamine B (Rh B) as a control pollutant. The results obtained indicate that the metal-doped titania had the highest activity at 0.4% metal loading. The kinetic models revealed that the photodegradation of Rh B followed a pseudo first order reaction. From ion chromatography (IC) analysis the degradation by-products Rhodamine B fragments were found to be acetate, chloride, nitrite, carbonate and nitrate ions.