978 resultados para Distributed parameters
Resumo:
Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).
Resumo:
Background: Budesonide has a long history as intranasal drug, with many marketed products. Efforts should be made to demonstrate the therapeutic equivalence and safety comparability between them. Given that systemic availability significantly varies from formulations, the clinical comparability of diverse products comes to be of clinical interest and a regulatory requirement. The aim of the present study was to compare the systemic availability, pharmacodynamic effect, and safety of two intranasal budesonide formulations for the treatment of rhinitis. Methods: Eighteen healthy volunteers participated in this randomised, controlled, crossover, clinical trial. On two separated days, subjects received a single dose of 512 mu g budesonide (4 puffs per nostril) from each of the assayed devices (Budesonida nasal 64 (R), Aldo-Union, Spain and Rhinocort 64 (R), AstraZeneca, Spain). Budesonide availability was determined by the measurement of budesonide plasma concentration. The pharmacodynamic effect on the hypothalamic-adrenal axis was evaluated as both plasma and urine cortisol levels. Adverse events were tabulated and described. Budesonide availability between formulations was compared by the calculation of 90% CI intervals of the ratios of the main pharmacokinetic parameters describing budesonide bioavailability. Plasma cortisol concentration-time curves were compared by means of a GLM for Repeated Measures. Urine cortisol excretion between formulations was compared through the Wilcoxon's test. Results: All the enroled volunteers successfully completed the study. Pharmacokinetic parameters were comparable in terms of AUC(t) (2.6 +/- 1.5 vs 2.2 +/- 0.7), AUCi (2.9 +/- 1.5 vs 2.4 +/- 0.7), t(max) (0.4 +/- 0.1 vs 0.4 +/- 0.2), C(max)/AUC(i) (0.3 +/- 0.1 vs 0.3 +/- 0.0), and MRT (5.0 +/- 1.4 vs 4.5 +/- 0.6), but not in the case of C(max) (0.9 +/- 0.3 vs 0.7 +/- 0.2) and t(1/2) (3.7 +/- 1.8 vs 2.9 +/- 0.4). The pharmacodynamic effects, measured as the effect over plasma and urine cortisol, were also comparables between both formulations. No severe adverse events were reported and tolerance was comparable between formulations. Conclusion: The systemic availability of intranasal budesonide was comparable for both formulations in terms of most pharmacokinetic parameters. The pharmacodynamic effect on hypothalamic-pituitary-adrenal axis was also similar. Side effects were scarce and equivalent between the two products. This methodology to compare different budesonide-containing devices is reliable and easy to perform, and should be recommended for similar products intented to be marketed or already on the market.
Resumo:
Background: Consensus development techniques were used in the late 1980s to create explicit criteria for the appropriateness of cataract extraction. We developed a new appropriateness of indications tool for cataract following the RAND method. We tested the validity of our panel results. Methods: Criteria were developed using a modified Delphi panel judgment process. A panel of 12 ophthalmologists was assembled. Ratings were analyzed regarding the level of agreement among panelists. We studied the influence of all variables on the final panel score using linear and logistic regression models. The explicit criteria developed were summarized by classification and regression tree analysis. Results: Of the 765 indications evaluated by the main panel in the second round, 32.9% were found appropriate, 30.1% uncertain, and 37% inappropriate. Agreement was found in 53% of the indications and disagreement in 0.9%. Seven variables were considered to create the indications and divided into three groups: simple cataract, with diabetic retinopathy, or with other ocular pathologies. The preoperative visual acuity in the cataractous eye and visual function were the variables that best explained the panel scoring. The panel results were synthesized and presented in three decision trees. Misclassification error in the decision trees, as compared with the panel original criteria, was 5.3%. Conclusion: The parameters tested showed acceptable validity for an evaluation tool. These results support the use of this indication algorithm as a screening tool for assessing the appropriateness of cataract extraction in field studies and for the development of practice guidelines.
Resumo:
This paper investigates the effects of structure parameters on dynamic responses of submerged floating tunnel (SFT) under hydrodynamic loads. The structure parameters includes buoyancy-weight ratio (BWR), stiffness coefficients of the cable systems, tunnel net buoyancy and tunnel length. First, the importance of structural damp in relation to the dynamic responses of SFT is demonstrated and the mechanism of structural damp effect is discussed. Thereafter, the fundamental structure parameters are investigated through the analysis of SFT dynamic responses under hydrodynamic loads. The results indicate that the BWR of SFT is a key structure parameter. When BWR is 1.2, there is a remarkable trend change in the vertical dynamic response of SFT under hydrodynamic loads. The results also indicate that the ratio of the tunnel net buoyancy to the cable stiffness coefficient is not a characteristic factor affecting the dynamic responses of SFT under hydrodynamic loads.
Resumo:
This study examines zooplankton periodicity and some physicochemical parameters of the intake channel of Lake Chad (Nigeria). Nine different zooplankton species were identified at the sampling station 1, while seven different zooplankton species were identified at the sampling station 2 (the intake channel of Lake Chad). Each identified zooplankton species was grouped according to its major group of copepods, Cladocera or Rotifera. The copepods dominated the zooplankton community with the highest numbers of occurrence as Cyclopedia species throughout the course of the study at both station l and 2. There was a clear evidence of the influence of organic manure nutrients on total zooplankton population at station 1 when compared to that of station 2. The water quality variables measured in the course of this study show that the surface water temperature in station 1 ranges from 27.5 degree C to 30.5 degree C. The pH ranges from 6.8 to 8.5, while D.O. contents ranges from 2.9mg/L to 6.1mg/L and alkalinity recorded was 172.00 to 208.00. At the station 2 the water quality parameters obtained show that surface water temperature ranges from 27.3 degree C to 30.2 degree C, pH ranges between 6.9 to 8.5, while the D.O contents ranges from 3.0 mg/L to 6.2 mg/L.Alkalinity ranges from 172mg/L to 212 mg/L
Resumo:
This dissertation is concerned with the problem of determining the dynamic characteristics of complicated engineering systems and structures from the measurements made during dynamic tests or natural excitations. Particular attention is given to the identification and modeling of the behavior of structural dynamic systems in the nonlinear hysteretic response regime. Once a model for the system has been identified, it is intended to use this model to assess the condition of the system and to predict the response to future excitations.
A new identification methodology based upon a generalization of the method of modal identification for multi-degree-of-freedom dynaimcal systems subjected to base motion is developed. The situation considered herein is that in which only the base input and the response of a small number of degrees-of-freedom of the system are measured. In this method, called the generalized modal identification method, the response is separated into "modes" which are analogous to those of a linear system. Both parametric and nonparametric models can be employed to extract the unknown nature, hysteretic or nonhysteretic, of the generalized restoring force for each mode.
In this study, a simple four-term nonparametric model is used first to provide a nonhysteretic estimate of the nonlinear stiffness and energy dissipation behavior. To extract the hysteretic nature of nonlinear systems, a two-parameter distributed element model is then employed. This model exploits the results of the nonparametric identification as an initial estimate for the model parameters. This approach greatly improves the convergence of the subsequent optimization process.
The capability of the new method is verified using simulated response data from a three-degree-of-freedom system. The new method is also applied to the analysis of response data obtained from the U.S.-Japan cooperative pseudo-dynamic test of a full-scale six-story steel-frame structure.
The new system identification method described has been found to be both accurate and computationally efficient. It is believed that it will provide a useful tool for the analysis of structural response data.
Resumo:
In this thesis, a method to retrieve the source finiteness, depth of faulting, and the mechanisms of large earthquakes from long-period surface waves is developed and applied to several recent large events.
In Chapter 1, source finiteness parameters of eleven large earthquakes were determined from long-period Rayleigh waves recorded at IDA and GDSN stations. The basic data set is the seismic spectra of periods from 150 to 300 sec. Two simple models of source finiteness are studied. The first model is a point source with finite duration. In the determination of the duration or source-process times, we used Furumoto's phase method and a linear inversion method, in which we simultaneously inverted the spectra and determined the source-process time that minimizes the error in the inversion. These two methods yielded consistent results. The second model is the finite fault model. Source finiteness of large shallow earthquakes with rupture on a fault plane with a large aspect ratio was modeled with the source-finiteness function introduced by Ben-Menahem. The spectra were inverted to find the extent and direction of the rupture of the earthquake that minimize the error in the inversion. This method is applied to the 1977 Sumbawa, Indonesia, 1979 Colombia-Ecuador, 1983 Akita-Oki, Japan, 1985 Valparaiso, Chile, and 1985 Michoacan, Mexico earthquakes. The method yielded results consistent with the rupture extent inferred from the aftershock area of these earthquakes.
In Chapter 2, the depths and source mechanisms of nine large shallow earthquakes were determined. We inverted the data set of complex source spectra for a moment tensor (linear) or a double couple (nonlinear). By solving a least-squares problem, we obtained the centroid depth or the extent of the distributed source for each earthquake. The depths and source mechanisms of large shallow earthquakes determined from long-period Rayleigh waves depend on the models of source finiteness, wave propagation, and the excitation. We tested various models of the source finiteness, Q, the group velocity, and the excitation in the determination of earthquake depths.
The depth estimates obtained using the Q model of Dziewonski and Steim (1982) and the excitation functions computed for the average ocean model of Regan and Anderson (1984) are considered most reasonable. Dziewonski and Steim's Q model represents a good global average of Q determined over a period range of the Rayleigh waves used in this study. Since most of the earthquakes studied here occurred in subduction zones Regan and Anderson's average ocean model is considered most appropriate.
Our depth estimates are in general consistent with the Harvard CMT solutions. The centroid depths and their 90 % confidence intervals (numbers in the parentheses) determined by the Student's t test are: Colombia-Ecuador earthquake (12 December 1979), d = 11 km, (9, 24) km; Santa Cruz Is. earthquake (17 July 1980), d = 36 km, (18, 46) km; Samoa earthquake (1 September 1981), d = 15 km, (9, 26) km; Playa Azul, Mexico earthquake (25 October 1981), d = 41 km, (28, 49) km; El Salvador earthquake (19 June 1982), d = 49 km, (41, 55) km; New Ireland earthquake (18 March 1983), d = 75 km, (72, 79) km; Chagos Bank earthquake (30 November 1983), d = 31 km, (16, 41) km; Valparaiso, Chile earthquake (3 March 1985), d = 44 km, (15, 54) km; Michoacan, Mexico earthquake (19 September 1985), d = 24 km, (12, 34) km.
In Chapter 3, the vertical extent of faulting of the 1983 Akita-Oki, and 1977 Sumbawa, Indonesia earthquakes are determined from fundamental and overtone Rayleigh waves. Using fundamental Rayleigh waves, the depths are determined from the moment tensor inversion and fault inversion. The observed overtone Rayleigh waves are compared to the synthetic overtone seismograms to estimate the depth of faulting of these earthquakes. The depths obtained from overtone Rayleigh waves are consistent with the depths determined from fundamental Rayleigh waves for the two earthquakes. Appendix B gives the observed seismograms of fundamental and overtone Rayleigh waves for eleven large earthquakes.
Resumo:
Abstract. A low power arcjet-thruster of 1 kW-class with gas mixture of H2-N2 or pure argon as the propellant is fired at a chamber pressure about 10 Pa. The nozzle temperature is detected with an infrared pyrometer; a plate set perpendicular to the plume axis and connected to a force sensor is used to measure the thrust; a probe with a tapered head is used for measuring the impact pressure in the plume flow; and a double-electrostatic probe system is applied to evaluate the electron temperature. Results indicate that the high nozzle temperature could adversely affect the conversion from enthalpy to kinetic energy. The plume flow deviates evidently from the LTE condition, and the rarefied-gas dynamic effect should be considered under the high temperature and low-pressure condition in analyzing the experimental phenomena.