962 resultados para Density functional theory method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The underlying mechanisms for the nucleation of carbon nanotubes as well as their helicity, remain elusive. Here, using van der Waals dispersion force calculations implemented within density functional theory, we study the cap formation, believed to be responsible for the chirality of surface-catalyzed carbon nanotubes. We find the energetics associated with growth along different facets to be independent of the surface orientation and that the growth across an edge along the axis of the metal particle leads to a perfect honeycomb lattice in a curved geometry. The formation of defects in the graphene matrix, which bend the carbon plane, requires that two or more graphene embryos with significantly different growth axis merge. Such scenario is only possible at the front- or back-end of the metal particle where growth symmetry is broken. The graphene embryos reconstruct their hexagonal structure into pentagons, heptagons, and octagons counterpart to accommodate the tube curvature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-dimensional (2D) materials have generated great interest in the last few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2) and insulating Boron Nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency and favorable transport properties for realizing electronic, sensing and optical systems on arbitrary surfaces. In this work, we develop several etch stop layer technologies that allow the fabrication of complex 2D devices and present for the first time the large scale integration of graphene with molybdenum disulfide (MoS2) , both grown using the fully scalable CVD technique. Transistor devices and logic circuits with MoS2 channel and graphene as contacts and interconnects are constructed and show high performances. In addition, the graphene/MoS2 heterojunction contact has been systematically compared with MoS2-metal junctions experimentally and studied using density functional theory. The tunability of the graphene work function significantly improves the ohmic contact to MoS2. These high-performance large-scale devices and circuits based on 2D heterostructure pave the way for practical flexible transparent electronics in the future. The authors acknowledge financial support from the Office of Naval Research (ONR) Young Investigator Program, the ONR GATE MURI program, and the Army Research Laboratory. This research has made use of the MI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon carbide (SiC) is a promising material for electronics due to its hardness, and ability to carry high currents and high operating temperature. SiC films are currently deposited using chemical vapor deposition (CVD) at high temperatures 1500–1600 °C. However, there is a need to deposit SiC-based films on the surface of high aspect ratio features at low temperatures. One of the most precise thin film deposition techniques on high-aspect-ratio surfaces that operates at low temperatures is atomic layer deposition (ALD). However, there are currently no known methods for ALD of SiC. Herein, the authors present a first-principles thermodynamic analysis so as to screen different precursor combinations for SiC thin films. The authors do this by calculating the Gibbs energy ΔGΔG of the reaction using density functional theory and including the effects of pressure and temperature. This theoretical model was validated for existing chemical reactions in CVD of SiC at 1000 °C. The precursors disilane (Si2H6), silane (SiH4), or monochlorosilane (SiH3Cl) with ethyne (C2H2), carbontetrachloride (CCl4), or trichloromethane (CHCl3) were predicted to be the most promising for ALD of SiC at 400 °C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incorporation of carbon nanostructures in metals is desirable to combine the strongly bonded electrons in the metal and the free electrons in carbon nanostructures that give rise to high ampacity and high conductivity, respectively. Carbon in copper has the potential to impact industries such as: building construction, power generation and transmission, and microelectronics. This thesis focuses on the structure and properties of bulk and thin films of a new material, Cu covetic, that contains carbon in concentrations up to 16 at.%. X-ray photoelectron spectroscopy (XPS) shows C 1s peak with both sp2 and sp3 bonded C measuring up to 3.5 wt.% (16 at.%). High resolution transmission electron microscopy and electron diffraction of bulk covetic samples show a modulated structure of ≈ 1.6 nm along several crystallographic directions in regions that have high C content suggesting that the carbon incorporates into the copper lattice forming a network. Electron energy loss spectra (EELS) from covetics reveal that the level of graphitization from the source material, activated carbon, is maintained in the covetic structure. Bulk Cu covetics have a slight increase in the lattice constant, as well as <111> texturing, or possibly a different structure, compared to pure Cu. Density functional theory calculations predict bonding between C and Cu at the edges and defects of graphene sheets. The electrical resistivity of bulk covetics first increases and then decreases with increasing C content. Cu covetic films were deposited using e-beam and pulsed laser deposition (PLD) at different temperatures. No copper oxide or any allotropes of carbon are present in the films. The e-beam films show enhanced electrical and optical properties when compared to pure Cu films of the same thickness even though no carbon was detected by XPS or EELS. They also have slightly higher ampacity than Cu metal films. EELS analysis of the C-K-edge in the PLD films indicate that graphitic carbon is transferred from the bulk into the films with uniform carbon distribution. PLD films exhibit flatter and higher transmittance curves and sheet resistance two orders of magnitude lower than e-beam films leading to a high figure of merit as transparent conductors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dans un contexte où l’énergie représente un enjeu majeur pour les pays et organisations à économies émergentes et développées, la recherche de nouvelles sources renouvelables et la démocratisation des vecteurs énergétiques permettant l’approvisionnement mondial de façon durable constitue un devoir pour la communauté scientifique internationale. D’ailleurs, il serait essentiel que les nombreuses disciplines de la chimie concertent leurs efforts. Plus particulièrement, la croissance de la recherche en chimie de coordination orientée vers la photosynthèse artificielle ainsi que le développement de matériaux fonctionnels démontre l’importance indéniable de ce champ de recherche. Ce travail présente dans un premier temps l’étude des différentes voies de synthèse d’hydroxyamidines, un ligand chélatant aux propriétés de coordination prometteuses ne recevant que très peu d’attention de la part de la communauté scientifique. Dans un deuxième temps, nous présenterons le développement d’une stratégie d’assemblage de leurs complexes supramoléculaires impliquant des métaux de transition abondants et peu dispendieux de la première rangée. Dans un troisième temps, il sera question de l’investigation de leurs propriétés photophysiques et électrochimiques à des fins d’applications au sein de matériaux fonctionnels. Pour ce faire, les différentes voies de synthèse des hydroxyamidines et de leurs amidines correspondantes qui ont précédemment été étudiées par les membres du groupe seront tout d’abord perfectionnées, puis investiguées afin de déterminer leur versatilité. Ensuite, les propriétés de complexation des amox résultantes comportant des motifs sélectionnés seront déterminées pour enfin étudier les propriétés photophysiques et électrochimiques d’une série de complexes de métaux de transition de la première rangée. En somme, plusieurs designs qu’offrent les amox et bis-amox sont étudiés et les propriétés des architectures résultantes de leur auto-assemblage sont déterminées.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of electronically-active heteroanions into polyoxometalates (POMs) is one of the emerging topics in this field. The novel clusters have shown unprecedented intramolecular electron-transfer features that can be directly mediated by the incorporated heteroanions. In this thesis, we will focus on the study of phosphite (HPO32-) as new non-traditional heteroanions, discover HPO32- templated nanostructures, investigate their electronic behaviours as well as understand the self-assembly process of HPO32--templated species. The thesis starts with incorporating HPO32- into POM cages. The feasibility of this work was illustrated by the successful trapping of HPO32- into a “Trojan Horse” type {W18O56} nanocage. The reactivity of embedded {HPO3} was fully studied, showing the cluster undergoes a structural rearrangement in solution whereby the {HPO3} moieties dimerise to form a weakly interacting (O3PH···HPO3) moiety. In the crystalline state a temperature-dependent intramolecular redox reaction and structural rearrangement occurs. This rearrangement appears to proceed via an intermediate containing two different templates, a pyramidal {HPO3} and a tetrahedral {PO4} moiety. {HPO3} templated POM cages were then vigorously expanded and led to the isolation of five either fully oxidised or mixed-valence clusters trapped with mono-, di-, or tri- {HPO3}. Interestingly, an intriguing 3D honeycomb-like host-guest structure was also synthesised. The porous framework was self-aggregated by a tri-phopshite anion templated {W21} cluster with a {VO4} templated Wells-Dawson type {W18} acting as a guest species within the hexagonal channels. Based on this work, we further extended the templating anions to two different redox-active heteroanions, and discovered a unique mixed-heteroatom templated system built by pairing redox-active {HPIIIO3} with {TeO3}, {SeO3} or {AsO3}. Two molecular systems were developed, ie. “Trojan Horse” type [W18O56(HPO3)0.8(SeO3)1.2(H2O)2]8- and cross-shaped [H4P4X4W64O224]32-/36-, where X=TeIV, SeIV, AsIII. In the case of {W18(HPO3)0.8(SeO3)1.2}, the compound is found to be a mixture of heteroleptic {W18(HPO3)(SeO3)} and homoleptic {W18(SeO3)2} and {W18(HPO3)2}, identified by single crystal x-ray diffraction, NMR as well as high resolution mass spectrometry. The cluster exhibited similar temperature-dependent electronic features to “Trojan Horse” type {W18(HPO3)2O56}. However, due to the intrinsic reactivity difference between {HPO3} and {SeO3}, the thermal treatment leads to the formation of an unusual species [W18O55(PO4)(SeO3)]5-, in which {HPO3} was fully oxidised to {PO4} within the cage, whereas and lone-pair-containing {SeO3} heteroanions were kept intact inside the shell. This finding is extremely interesting, as it demonstrated that multiple and independent intramolecular electronic performance can be achieved by the coexistence of distinct heteroatoms within a single molecule. On the other hand, the cross-shaped [H4P4X4W64O224]32-/36- were constructed by four {W15(HPO3)(XO3)} building units linked by four {WO6} octahedra. Each building unit traps two different heteroatoms. It is interesting to note that the mixed heteroatom species show self-sorting, with a highly selective positional preference. Smaller ionic sized {HPO3} are self-organised into the uncapped side of {W15} cavity, whereas closed side are occupied by larger heteroatoms, which is surprisingly opposed to steric hindrance. Density functional theory (DFT) calculations are currently underway to have a full understanding of the preference of heteroatom substitutions. This series of clusters is of great interest in terms of achieving single molecule-based heteroatom-dependent multiple levels of electron transfer. It has opened a new way to design and synthesise POMs with higher diversity of electrical states, which may lead to a new type of Q-bits for quantum computing. The third chapter is focused on developing polyoxotungstate building blocks templated by {HPO3}. A series of building blocks, {W15O48(HPO3)2}, {W9O30(HPO3)} {W12O40(HPO3)2} and hexagonal {W6O18(HPO3)} have been obtained. The first four building blocks have been reported with {SeO3} and/or {TeO3} heteroanions. This result demonstrates {HPO3} has a similar reactivity as {SeO3} and {TeO3}, therefore studying the self-assembly of {HPO3}-based building blocks would be helpful to have a general understanding of pyramidal heteroatom-based molecular systems. The hexagonal {W6O18(HPO3)} is observed for the first time in polyoxotungstates, showing some of reactivity difference between {HPO3} and {SeO3} and {TeO3}. Furthermore, inorganic salts and pH values have some directing influence on the formation and transformation of various building blocks, resulting in the discovery of a family of {HPO3}-based clusters with nuclearity ranging from {W29} to {W106}. High resolution mass spectrometry was also carried out to investigate the cluster solution behaviour and also gain information of building block speciation. It is found that some clusters experienced decomposition, which gives rise to potential building blocks accountable for the self-assembly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among different classes of ionic liquids (ILs), those with cyano-based anions have been of special interest due to their low viscosity and enhanced solvation ability for a large variety of compounds. Experimental results from this work reveal that the solubility of glucose in some of these ionic liquids may be higher than in water – a well-known solvent with enhanced capacity to dissolve mono- and disaccharides. This raises questions on the ability of cyano groups to establish strong hydrogen bonds with carbohydrates and on the optimal number of cyano groups at the IL anion that maximizes the solubility of glucose. In addition to experimental solubility data, these questions are addressed in this study using a combination of density functional theory (DFT) and molecular dynamics (MD) simulations. Through the calculation of the number of hydrogen bonds, coordination numbers, energies of interaction and radial and spatial distribution functions, it was possible to explain the experimental results and to show that the ability to favorably interact with glucose is driven by the polarity of each IL anion, with the optimal anion being dicyanamide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the studies devoted to thiolated gold clusters suppose that their core and Au-S framework do not suffer from distortion independently of the protecting ligands (-SR) and it is assumed as correct to simplify the ligand as SCH3. In this work is delivered a systematic study of the structure and vibrational properties (IR and Raman) of the Au18(SR)14 cluster. The pursued goal is to understand the dependency of the displayed vibrational properties of the thiolated Au18 cluster with the ligands type. A set of six ligands was considered during calculations of the vibrational properties based on density functional theory (DFT) and in its dispersioncorrected approach (DFT-D)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of chiral and achiral ligands protecting the inner Au9 core of the Au18(SR)14 cluster is studied based on density functional theory (DFT) and its corrected long-range interaction (DFT-D) approach. It was found that the electronic properties (energy levels) depend on the specific ligands, which induce distinct distortions on the Au–S framework. However, the substitution of S-c-C6H11 as SCH3 ligands may be considered to be correct given the obtained resemblance to the displayed bonding, optical and chiroptical properties. A further comparison of the CD and UV spectra displayed by the Au18 cluster protected by chiral and achiral ligands attests that more intense profiles are featured by ligands including phenyl rings and/or oxygen atoms such that the Au18 cluster protected by either achiral metamercaptobenzoic acid (m-MBA) or achiral SPh ligands displays more intense UV and CD signals. These results provide new insight into the effect of ligands on thiolated gold clusters