958 resultados para DARK CLUMP
Resumo:
Passiflora edulis, the passion fruit native from Brazil, has several common names (such as sour passion fruit, yellow passion fruit, black passion fruit, and purple passion fruit), and presents a wide variability with the different rind colors of its fruits, which are very easy to notice. However, in 1932, Otto Degener suggested that the yellow passion fruit had its origin in Australia through breeding, calling it P. edulis forma flavicarpa, and that it could be distinguished by the color of the fruit, the deeper shade of purple of the corona, and the presence of glands on the sepals. These distinctions do not support themselves, for the glands are common to the species (although they may be absent), and the corona has a wide range of colors, regardless of the color of the fruit. A more critical ingredient is the fact that the external coloration of the fruit is a character of complex inheritance and is not dominant, thus displaying a number of intermediate colors, making it difficult to identify the extreme colors. For the correct scientific naming of agricultural plants, the International Code of Botanical Nomenclature must be used in conjunction with the International Code of Nomenclature for Cultivated Plants, with the selections with significant agronomic characteristics recognized and named cultivars. In accordance with the international convention promoted by the UPOV, of which Brazil is a signatory, several colors (light yellow, yellow, orange yellow, pink red, red, red purple, green purple, purple, and dark purple) can be recognized in order to adequately characterize passion fruit cultivars within the species P. edulis. At taxonomic level, Passiflora edulis Sims must be used for any plant and color of sour passion fruits, in combination with a cultivar name for the selected materials.
Resumo:
This work aimed to evaluate the influence of naphthaleneacetic acid (NAA) and gibberellic acid (GA3) plant regulators in in vitro etiolation and subsequent regeneration of the PE x SC-60 pineapple hybrid. Nodal segments of in vitro plants with approximately 5-7 cm height were incubated in basic MS culture medium supplemented with 0.0; 0.5 and 1.0 mg L-1 of naphthaleneacetic acid (NAA) in combination with gibberellic acid (GA3) in concentrations of 0.0; 0.5 and 1.0 mg L-1, and maintained at 27 ºC under dark condition. Evaluations were carried out at 90 and 180 days after incubation period. The best results for length of etiolated stems were obtained with 1.0 mg L-1 of NAA. In the experiment followed by the regeneration, stems with 3 cm from the etiolation treatment, were cultivated in proliferation medium and the number of regenerated plants per treatment was evaluated at 60 days of cultivation. The treatment that promoted the best etiolation of plants also promoted the worst regeneration rates, demonstrating the residual effect of the auxin used in the previous step in the regeneration of plants of the pineapple hybrid evaluated.
Resumo:
The close relationship between the chlorophyll-meters readings and the total chlorophyll and nitrogen contents in leaves, has allowed their evaluation both in annual and perennial species. Besides, some physiological events such as the CO2 assimilation have also been estimated by chlorophyll meters. This work was carried out aiming to evaluate the gas exchanges of peach palms as a function of the chlorophyll SPAD-Meter readings. Three year-old peach palms from Yurimaguas, Peru were studied in Ubatuba, SP, Brazil, spaced 2 x 1 m in area under a natural gradient of organic matter which allowed four plots to be considered, according to the peach palms leaves colors, from light yellow to dark green. The SPAD readings and the stomatal frequency of leaflets were evaluated. The photosynthetic photon flux density (PPFD, μmol m-2 s-1), the leaf temperature (Tleaf, ºC), the CO2 assimilation (A, μmol m-2 s-1), the stomatal conductance (g s, mol m-2 s-1), the transpiration (E, mmol m-2 s-1) and the intercellular CO2 concentration (Ci, μmol mol-1) were evaluated with a portable infrared gas analyzer (LCA-4, ADC BioScientific Ltd., Great Amwell, U.K.). A linear increase in the CO2 assimilation as a function of the SPAD readings (y = -0.34 + 0.19x, R² = 0.99), indicates that they can be a rapid and cheap complementary method to evaluate in peach palms some important physiological events, such as CO2 assimilation.
Resumo:
It has been shown that it is possible to generate perceptual illusions of ownership in immersive virtual reality (IVR) over a virtual body seen from first person perspective, in other words over a body that visually substitutes the person's real body. This can occur even when the virtual body is quite different in appearance from the person's real body. However, investigation of the psychological, behavioral and attitudinal consequences of such body transformations remains an interesting problem with much to be discovered. Thirty six Caucasian people participated in a between-groups experiment where they played a West-African Djembe hand drum while immersed in IVR and with a virtual body that substituted their own. The virtual hand drum was registered with a physical drum. They were alongside a virtual character that played a drum in a supporting, accompanying role. In a baseline condition participants were represented only by plainly shaded white hands, so that they were able merely to play. In the experimental condition they were represented either by a casually dressed dark-skinned virtual body (Casual Dark-Skinned - CD) or by a formal suited light-skinned body (Formal Light-Skinned - FL). Although participants of both groups experienced a strong body ownership illusion towards the virtual body, only those with the CD representation showed significant increases in their movement patterns for drumming compared to the baseline condition and compared with those embodied in the FL body. Moreover, the stronger the illusion of body ownership in the CD condition, the greater this behavioral change. A path analysis showed that the observed behavioral changes were a function of the strength of the illusion of body ownership towards the virtual body and its perceived appropriateness for the drumming task. These results demonstrate that full body ownership illusions can lead to substantial behavioral and possibly cognitive changes depending on the appearance of the virtual body. This could be important for many applications such as learning, education, training, psychotherapy and rehabilitation using IVR.
Resumo:
We examined the effect of anterior ischemic optic neuropathy (AION) on the activity of intrinsically photosensitive retinal ganglion cells (ipRGCs) using the pupil as proxy. Eighteen patients with AION (10 unilateral, 8 bilateral) and 29 age-matched control subjects underwent chromatic pupillometry. Red and blue light stimuli increasing in 0.5 log steps were presented to each eye independently under conditions of dark and light adaptation. The recorded pupil contraction was plotted against stimulus intensity to generate scotopic and photopic response curves for assessment of synaptically-mediated ipRGC activity. Bright blue light stimuli presented monocularly and binocularly were used for melanopsin activation. The post-stimulus pupil size (PSPS) at the 6th second following stimulus offset was the marker of intrinsic ipRGC activity. Finally, questionnaires were administered to assess the influence of ipRGCs on sleep. The pupil response and PSPS to all monocularly-presented light stimuli were impaired in AION eyes, indicating ipRGC dysfunction. To binocular light stimulation, the PSPS of AION patients was similar to that of controls. There was no difference in the sleep habits of the two groups. Thus after ischemic injury to one or both optic nerves, the summated intrinsic ipRGC activity is preserved when both eyes receive adequate light exposure.
Resumo:
A photoactivated ruthenium(II) arene complex has been conjugated to two receptor-binding peptides, a dicarba analogue of octreotide and the Arg-Gly-Asp (RGD) tripeptide. These peptides can act as"tumor-targeting devices" since their receptors are overexpressed on the membranes of tumor cells. Both ruthenium-peptide conjugates are stable in aqueous solution in the dark, but upon irradiation with visible light, the pyridyl-derivatized peptides were selectively photodissociated from the ruthenium complex, as inferred by UV-vis and NMR spectroscopy. Importantly, the reactive aqua species generated from the conjugates, [(η6-p-cym)Ru(bpm)(H2O)]2+, reacted with the model DNA nucleobase 9-ethylguanine as well as with guanines of two DNA sequences, 5′dCATGGCT and 5′dAGCCATG. Interestingly, when irradiation was performed in the presence of the oligonucleotides, a new ruthenium adduct involving both guanines was formed as a consequence of the photodriven loss of p-cymene from the two monofunctional adducts. The release of the arene ligand and the formation of a ruthenated product with a multidentate binding mode might have important implications for the biological activity of such photoactivated ruthenium(II) arene complexes. Finally, photoreactions with the peptide-oligonucleotide hybrid, Phac-His-Gly-Met-linker-p5′dCATGGCT, also led to arene release and to guanine adducts, including a GG chelate. The lack of interaction with the peptide fragment confirms the preference of such organometallic ruthenium(II) complexes for guanine over other potential biological ligands, such as histidine or methionine amino acids.
Resumo:
Nitrogen isotope composition (δ15N) in plant organic matter is currently used as a natural tracer of nitrogen acquisition efficiency. However, the δ15N value of whole leaf material does not properly reflect the way in which N is assimilated because isotope fractionations along metabolic reactions may cause substantial differences among leaf compounds. In other words, any change in metabolic composition or allocation pattern may cause undesirable variability in leaf δ15N. Here, we investigated the δ15N in different leaf fractions and individual metabolites from rapeseed (Brassica napus) leaves. We show that there were substantial differences in δ15N between nitrogenous compounds (up to 30 ) and the content in (15N enriched) nitrate had a clear influence on leaf δ15N. Using a simple steady-state model of day metabolism, we suggest that the δ15N value in major amino acids was mostly explained by isotope fractionation associated with isotope effects on enzyme-catalysed reactions in primary nitrogen metabolism. δ15N values were further influenced by light versus dark conditions and the probable occurrence of alternative biosynthetic pathways. We conclude that both biochemical pathways (that fractionate between isotopes) and nitrogen sources (used for amino acid production) should be considered when interpreting the δ15N value of leaf nitrogenous compounds
Resumo:
Tämän diplomityön tarkoituksena oli Finnsementti osakeyhtiöön kuuluvan betonin lisäaineita valmistavan tehtaan tuotantoprosessin kehittäminen. Työssä laadittiin myynnin kasvuennusteen perusteella suunnitelma, jonka mukaan määriteltiin betonin lisäaineille ja raaka-aineille sopivat varastosäiliöt. Suunnitelman perusteella määriteltiin kiinteät putkilinjat sekä kirkkaille että tummille nesteille, jolloin materiaalihäviöt saatiin pienemmiksi ja putkilinjojen pesun tarve väheni. Lisäksi työssä otettiin huomioon tuotantoprosessin automatisointi. Suunnitellusta projektista laadittiin alustava kustannusarvio, toteutusaikataulu sekä sijoituspiirustus, putkisto-instrumentointikaavio ja 3D-piirrokset. Projektin kustannusarvioksi saatiin noin 290 tuhatta markkaa ja projektin pituudeksi noin 11 viikkoa.
Resumo:
Genetic color polymorphism is widespread in nature. There is an increasing interest in understanding the adaptive value of heritable color variation and trade-off resolution by differently colored individuals. Melanin-based pigmentation is often associated with variation in many different life history traits. These associations have recently been suggested to be the outcome of pleiotropic effects of the melanocortin system. Although pharmacological research supports that MC1R, a gene with a major role in vertebrate pigmentation, has important immunomodulatory effects, evidence regarding pleiotropy at MC1R in natural populations is still under debate. We experimentally assessed whether MC1R-based pigmentation covaries with both inflammatory and humoral immune responses in the color polymorphic Eleonora's falcon. By means of a cross-fostering experiment, we disentangled potential genetic effects from environmental effects on the covariation between coloration and immunity. Variation in both immune responses was primarily due to genetic factors via the nestlings' MC1R-related color genotype/phenotype, although environmental effects via the color morph of the foster father also had an influence. Overall, dark nestlings had lower immune responses than pale ones. The effect of the color morph of the foster father was also high, but in the opposite direction, and nestlings raised by dark eumelanic foster fathers had higher immune responses than those raised by pale foster fathers. Although we cannot completely discard alternative explanations, our results suggest that MC1R might influence immunity in this species. Morph-specific variation in immunity as well as pathogen pressure may therefore contribute to the long-term maintenance of genetic color polymorphism in natural populations.
Resumo:
This study investigated fingermark residues using Fourier transform infrared microscopy (μ- FTIR) in order to obtain fundamental information about the marks' initial composition and aging kinetics. This knowledge would be an asset for fundamental research on fingermarks, such as for dating purposes. Attenuated Total Reflection (ATR) and single-point reflection modes were tested on fresh fingermarks. ATR proved to be better suited and this mode was subsequently selected for further aging studies. Eccrine and sebaceous material was found in fresh and aged fingermarks and the spectral regions 1000-1850 cm-1 and 2700-3600 cm-1 were identified as the most informative. The impact of substrates (aluminium and glass slides) and storage conditions (storage in the light and in the dark) on fingermark aging was also studied. Chemometric analyses showed that fingermarks could be grouped according to their age regardless of the substrate when they were stored in an open box kept in an air-conditioned laboratory at around 20°C next to a window. On the contrary, when fingermarks were stored in the dark, only specimens deposited on the same substrate could be grouped by age. Thus, the substrate appeared to influence aging of fingermarks in the dark. Furthermore, PLS regression analyses were conducted in order to study the possibility of modelling fingermark aging for potential fingermark dating applications. The resulting models showed an overall precision of ±3 days and clearly demonstrated their capability to differentiate older fingermarks (20 and 34-days old) from newer ones (1, 3, 7 and 9-days old) regardless of the substrate and lighting conditions. These results are promising from a fingermark dating perspective. Further research is required to fully validate such models and assess their robustness and limitations in uncontrolled casework conditions.
Resumo:
Three different pixels based on single-photon avalanche diodes for triggered applications, such as fluorescence lifetime measurements and high energy physics experiments, are presented. Each pixel consists of a 20µm x 100µm (width x length) single photon avalanche diode and a monolithically integrated readout circuit. The sensors are operated in the gated mode of acquisition to reduce the probability to detect noise counts interferring with real radiation events. Each pixel includes a different readout circuit that allows to use low reverse bias overvoltages. Experimental results demonstrate that the three pixels present a similar behaviour. The pixels get rid of afterpulses and present a reduced dark count probability by applying the gated operation. Noise figures are further improved by using low reverse bias overvoltages. The detectors exhibit an input dynamic range of 13.35 bits with short gated"on" periods of 10ns and a reverse bias overvoltage of 0.5V. The three pixels have been fabricated in a standard HV-CMOS process.
Resumo:
At present, there are no in vivo or in vitro methods developed which has been adopted by regulatory authorities to assess photosensitization induced by chemicals. Recently, we have proposed the use of THP-1 cells and IL-8 release to identify the potential of chemicals to induce skin sensitization. Based on the assumption that sensitization and photosensitization share common mechanisms, the aim of this work was to explore the THP-1 model as an in vitro model to identify photoallergenic chemicals. THP-1 cells were exposed to 7 photoallergens and 3 photoirritants and irradiated with UVA light or kept in dark. Non phototoxic allergens or irritants were also included as negative compounds. Following 24 h of incubation, cytotoxicity and IL-8 release were measured. At subtoxic concentrations, photoallergens produced a dose-related increase in IL-8 release after irradiation. Some photoirritants also produced a slight increase in IL-8 release. However, when the overall stimulation indexes of IL-8 were calculated for each chemical, 6 out of 7 photoallergens tested reached a stimulation index above 2, while the entire set of negative compounds had stimulation indexes below 2. Our data suggest that this assay may become a useful cell-based in vitro test for evaluating the photosensitizing potential of chemicals.
Resumo:
Soybean (Glycine max. L.) nodular senescence results in the dismantling of the peribacteroid membrane (PBM) and in an increase of soybean isocitrate lyase (ICL; EC 4.1.3.1) and malate synthase (MS; EC 4.1.3.2) mRNA and protein levels. This suggests that in senescing soybean nodular cells, the specific glyoxylate cycle enzyme activities might be induced to reallocate carbon obtained from the PBM degradation. In order to evaluate as well the carbon metabolism of the nitrogen-fixing Bradyrhizobium japonicum endosymbiotic bacteroids during nodular senescence, their glyoxylate cycle activities were also investigated. To this end, partial DNA sequences were isolated from their icl and ms genes, but the corresponding mRNAs were not detected in the microorganisms. It was also observed that the bacteroid ICL and MS activities were negligible during nodular senescence. This suggests that glyoxylate cycle activities are not reinitiated in the bacteroids under these physiological conditions. In case the microorganisms nevertheless feed on the PBM degradation products, this might occur via the citric acid cycle exclusively.
Resumo:
Malate synthase (MS; EC 4.1.3.2), an enzyme specific to the glyoxylate cycle, was studied in cotyledons of dark-grown soybean (Glycine max L) seedlings with light and electron microscopy techniques. Immunogold localization confirmed biochemical evidence that MS from soybean is a glyoxysomal matrix enzyme.
Resumo:
Context. The understanding of Galaxy evolution can be facilitated by the use of population synthesis models, which allow to test hypotheses on the star formation history, star evolution, as well as chemical and dynamical evolution of the Galaxy. Aims. The new version of the Besanc¸on Galaxy Model (hereafter BGM) aims to provide a more flexible and powerful tool to investigate the Initial Mass Function (IMF) and Star Formation Rate (SFR) of the Galactic disc. Methods. We present a new strategy for the generation of thin disc stars which assumes the IMF, SFR and evolutionary tracks as free parameters. We have updated most of the ingredients for the star count production and, for the first time, binary stars are generated in a consistent way. We keep in this new scheme the local dynamical self-consistency as in Bienayme et al (1987). We then compare simulations from the new model with Tycho-2 data and the local luminosity function, as a first test to verify and constrain the new ingredients. The effects of changing thirteen different ingredients of the model are systematically studied. Results. For the first time, a full sky comparison is performed between BGM and data. This strategy allows to constrain the IMF slope at high masses which is found to be close to 3.0, excluding a shallower slope such as Salpeter"s one. The SFR is found decreasing whatever IMF is assumed. The model is compatible with a local dark matter density of 0.011 M pc−3 implying that there is no compelling evidence for significant amount of dark matter in the disc. While the model is fitted to Tycho2 data, a magnitude limited sample with V<11, we check that it is still consistent with fainter stars. Conclusions. The new model constitutes a new basis for further comparisons with large scale surveys and is being prepared to become a powerful tool for the analysis of the Gaia mission data.