905 resultados para Couplings of chaotic dynamical systems
Resumo:
The advantageous use of fractional calculus (FC) in the modeling and control of many dynamical systems has been recognized. In this paper, we study the control of a heat diffusion system based on the application of the FC concepts. Several algorithms are investigated and compared, when integrated within a Smith predictor control structure. Simulations are presented assessing the performance of the proposed fractional algorithms.
Resumo:
In last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performed
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Este trabajo aborda el problema de modelizar sistemas din´amicos reales a partir del estudio de sus series temporales, usando una formulaci´on est´andar que pretende ser una abstracci´on universal de los sistemas din´amicos, independientemente de su naturaleza determinista, estoc´astica o h´ıbrida. Se parte de modelizaciones separadas de sistemas deterministas por un lado y estoc´asticos por otro, para converger finalmente en un modelo h´ıbrido que permite estudiar sistemas gen´ericos mixtos, esto es, que presentan una combinaci´on de comportamiento determinista y aleatorio. Este modelo consta de dos componentes, uno determinista consistente en una ecuaci´on en diferencias, obtenida a partir de un estudio de autocorrelaci´on, y otro estoc´astico que modeliza el error cometido por el primero. El componente estoc´astico es un generador universal de distribuciones de probabilidad, basado en un proceso compuesto de variables aleatorias, uniformemente distribuidas en un intervalo variable en el tiempo. Este generador universal es deducido en la tesis a partir de una nueva teor´ıa sobre la oferta y la demanda de un recurso gen´erico. El modelo resultante puede formularse conceptualmente como una entidad con tres elementos fundamentales: un motor generador de din´amica determinista, una fuente interna de ruido generadora de incertidumbre y una exposici´on al entorno que representa las interacciones del sistema real con el mundo exterior. En las aplicaciones estos tres elementos se ajustan en base al hist´orico de las series temporales del sistema din´amico. Una vez ajustados sus componentes, el modelo se comporta de una forma adaptativa tomando como inputs los nuevos valores de las series temporales del sistema y calculando predicciones sobre su comportamiento futuro. Cada predicci´on se presenta como un intervalo dentro del cual cualquier valor es equipro- bable, teniendo probabilidad nula cualquier valor externo al intervalo. De esta forma el modelo computa el comportamiento futuro y su nivel de incertidumbre en base al estado actual del sistema. Se ha aplicado el modelo en esta tesis a sistemas muy diferentes mostrando ser muy flexible para afrontar el estudio de campos de naturaleza dispar. El intercambio de tr´afico telef´onico entre operadores de telefon´ıa, la evoluci´on de mercados financieros y el flujo de informaci´on entre servidores de Internet son estudiados en profundidad en la tesis. Todos estos sistemas son modelizados de forma exitosa con un mismo lenguaje, a pesar de tratarse de sistemas f´ısicos totalmente distintos. El estudio de las redes de telefon´ıa muestra que los patrones de tr´afico telef´onico presentan una fuerte pseudo-periodicidad semanal contaminada con una gran cantidad de ruido, sobre todo en el caso de llamadas internacionales. El estudio de los mercados financieros muestra por su parte que la naturaleza fundamental de ´estos es aleatoria con un rango de comportamiento relativamente acotado. Una parte de la tesis se dedica a explicar algunas de las manifestaciones emp´ıricas m´as importantes en los mercados financieros como son los “fat tails”, “power laws” y “volatility clustering”. Por ´ultimo se demuestra que la comunicaci´on entre servidores de Internet tiene, al igual que los mercados financieros, una componente subyacente totalmente estoc´astica pero de comportamiento bastante “d´ocil”, siendo esta docilidad m´as acusada a medida que aumenta la distancia entre servidores. Dos aspectos son destacables en el modelo, su adaptabilidad y su universalidad. El primero es debido a que, una vez ajustados los par´ametros generales, el modelo se “alimenta” de los valores observables del sistema y es capaz de calcular con ellos comportamientos futuros. A pesar de tener unos par´ametros fijos, la variabilidad en los observables que sirven de input al modelo llevan a una gran riqueza de ouputs posibles. El segundo aspecto se debe a la formulaci´on gen´erica del modelo h´ıbrido y a que sus par´ametros se ajustan en base a manifestaciones externas del sistema en estudio, y no en base a sus caracter´ısticas f´ısicas. Estos factores hacen que el modelo pueda utilizarse en gran variedad de campos. Por ´ultimo, la tesis propone en su parte final otros campos donde se han obtenido ´exitos preliminares muy prometedores como son la modelizaci´on del riesgo financiero, los algoritmos de routing en redes de telecomunicaci´on y el cambio clim´atico. Abstract This work faces the problem of modeling dynamical systems based on the study of its time series, by using a standard language that aims to be an universal abstraction of dynamical systems, irrespective of their deterministic, stochastic or hybrid nature. Deterministic and stochastic models are developed separately to be merged subsequently into a hybrid model, which allows the study of generic systems, that is to say, those having both deterministic and random behavior. This model is a combination of two different components. One of them is deterministic and consisting in an equation in differences derived from an auto-correlation study and the other is stochastic and models the errors made by the deterministic one. The stochastic component is an universal generator of probability distributions based on a process consisting in random variables distributed uniformly within an interval varying in time. This universal generator is derived in the thesis from a new theory of offer and demand for a generic resource. The resulting model can be visualized as an entity with three fundamental elements: an engine generating deterministic dynamics, an internal source of noise generating uncertainty and an exposure to the environment which depicts the interactions between the real system and the external world. In the applications these three elements are adjusted to the history of the time series from the dynamical system. Once its components have been adjusted, the model behaves in an adaptive way by using the new time series values from the system as inputs and calculating predictions about its future behavior. Every prediction is provided as an interval, where any inner value is equally probable while all outer ones have null probability. So, the model computes the future behavior and its level of uncertainty based on the current state of the system. The model is applied to quite different systems in this thesis, showing to be very flexible when facing the study of fields with diverse nature. The exchange of traffic between telephony operators, the evolution of financial markets and the flow of information between servers on the Internet are deeply studied in this thesis. All these systems are successfully modeled by using the same “language”, in spite the fact that they are systems physically radically different. The study of telephony networks shows that the traffic patterns are strongly weekly pseudo-periodic but mixed with a great amount of noise, specially in the case of international calls. It is proved that the underlying nature of financial markets is random with a moderate range of variability. A part of this thesis is devoted to explain some of the most important empirical observations in financial markets, such as “fat tails”, “power laws” and “volatility clustering”. Finally it is proved that the communication between two servers on the Internet has, as in the case of financial markets, an underlaying random dynamics but with a narrow range of variability, being this lack of variability more marked as the distance between servers is increased. Two aspects of the model stand out as being the most important: its adaptability and its universality. The first one is due to the fact that once the general parameters have been adjusted , the model is “fed” on the observable manifestations of the system in order to calculate its future behavior. Despite the fact that the model has fixed parameters the variability in the observable manifestations of the system, which are used as inputs of the model, lead to a great variability in the possible outputs. The second aspect is due to the general “language” used in the formulation of the hybrid model and to the fact that its parameters are adjusted based on external manifestations of the system under study instead of its physical characteristics. These factors made the model suitable to be used in great variety of fields. Lastly, this thesis proposes other fields in which preliminary and promising results have been obtained, such as the modeling of financial risk, the development of routing algorithms for telecommunication networks and the assessment of climate change.
Resumo:
En esta tesis se aborda el estudio del proceso de isomerización del sistema molecular LiNC/LiCN tanto aislado como en presencia de un pulso láser aplicando la teoría del estado de transición (TST). Esta teoría tiene como pilar fundamental el hecho de que el conocimiento de la dinámica en las proximidades de un punto de silla de la superficie de energía potencial permite determinar los parámetros cinéticos de la reacción objeto de estudio. Históricamente, existen dos formulaciones de la teoría del estado de transición, la versión termodinámica de Eyring (Eyr38) y la visión dinámica de Wigner (Wig38). Ésta última ha sufrido recientemente un amplio desarrollo, paralelo a los avances en sistemas dinámicos que ha dado lugar a una formulación geométrica en el espacio de fases que sirve como base al trabajo desarrollado en esta tesis. Nos hemos centrado en abordar el problema desde una visión fundamentalmente práctica, ya que la teoría del estado de transición presenta una desventaja: su elevado coste computacional y de tiempo de cálculo. Dos han sido los principales objetivos de este trabajo. El primero de ellos ha sido sentar las bases teóricas y computacionales de un algoritmo eficiente que permita obtener las magnitudes fundamentales de la TST. Así, hemos adaptado con éxito un algoritmo computacional desarrollado en el ámbito de la mecánica celeste (Jor99), obteniendo un método rápido y eficiente para la obtención de los objetos geométricos que rigen la dinámica en el espacio de fases y que ha permitido calcular magnitudes cinéticas tales como el flujo reactivo, la densidad de estados de reactivos y productos y en última instancia la constante de velocidad. Dichos cálculos han sido comparados con resultados estadísticos (presentados en (Mül07)) lo cual nos ha permitido demostrar la eficacia del método empleado. El segundo objetivo de esta tesis, ha sido la evaluación de la influencia de los parámetros de un pulso electromagnético sobre la dinámica de reacción. Para ello se ha generalizado la metodología de obtención de la forma normal del hamiltoniano cuando el sistema químico es alterado mediante una perturbación temporal periódica. En este caso el punto fijo inestable en cuya vecindad se calculan los objetos geométricos de interés para la aplicación de la TST, se transforma en una órbita periódica del mismo periodo que la perturbación. Esto ha permitido la simulación de la reactividad en presencia de un pulso láser. Conocer el efecto de esta perturbación posibilita el control de la reactividad química. Además de obtener los objetos geométricos que rigen la dinámica en una cierta vecindad de la órbita periódica y que son la clave de la TST, se ha estudiado el efecto de los parámetros del pulso sobre la reactividad en el espacio de fases global así como sobre el flujo reactivo que atraviesa la superficie divisoria que separa reactivos de productos. Así, se ha puesto de manifiesto, que la amplitud del pulso es el parámetro más influyente sobre la reactividad química, pudiendo producir la aparición de flujos reactivos a energías inferiores a las de aparición del sistema aislado y el aumento del flujo reactivo a valores constantes de energía inicial. ABSTRACT We have studied the isomerization reaction LiNC/LiCN isolated and perturbed by a laser pulse. Transition State theory (TST) is the main tool we have used. The basis of this theory is knowing the dynamics close to a fixed point of the potential energy surface. It is possible to calculate kinetic magnitudes by knowing the dynamics in a neighbourhood of the fixed point. TST was first formulated in the 30's and there were 2 points of view, one thermodynamical by Eyring (Eyr38) and another dynamical one by Wigner (Wig38). The latter one has grown lately due to the growth of the dynamical systems leading to a geometrical view of the TST. This is the basis of the work shown in this thesis. As the TST has one main handicap: the high computational cost, one of the main goals of this work is to find an efficient method. We have adapted a methodology developed in the field of celestial mechanics (Jor99). The result: an efficient, fast and accurate algorithm that allows us to obtain the geometric objects that lead the dynamics close to the fixed point. Flux across the dividing surface, density of states and reaction rate coefficient have been calculated and compared with previous statistical results, (Mül07), leading to the conclusion that the method is accurate and good enough. We have widen the methodology to include a time dependent perturbation. If the perturbation is periodic in time, the fixed point becomes a periodic orbit whose period is the same as the period of the perturbation. This way we have been able to simulate the isomerization reaction when the system has been perturbed by a laser pulse. By knowing the effect of that perturbation we will be able to control the chemical reactivity. We have also studied the effect of the parameters on the global phase space dynamics and on the flux across the dividing surface. It has been prove that amplitude is the most influent parameter on the reaction dynamics. Increasing amplitude leads to greater fluxes and to some flux at energies it would not if the systems would not have been perturbed.
Resumo:
Complexity originates from the tendency of large dynamical systems to organize themselves into a critical state, with avalanches or "punctuations" of all sizes. In the critical state, events which would otherwise be uncoupled become correlated. The apparent, historical contingency in many sciences, including geology, biology, and economics, finds a natural interpretation as a self-organized critical phenomenon. These ideas are discussed in the context of simple mathematical models of sandpiles and biological evolution. Insights are gained not only from numerical simulations but also from rigorous mathematical analysis.
Resumo:
In this paper the dynamics of the ideal and non-ideal Duffing oscillator with chaotic behavior is considered. In order to suppress the chaotic behavior and to control the system, a control signal is introduced in the system dynamics. The control strategy involves the application of two control signals, a nonlinear feedforward control to maintain the controlled system in a periodic orbit, obtained by the harmonic balance method, and a state feedback control, obtained by the state dependent Riccati equation, to bring the system trajectory into the desired periodic orbit. Additionally, the control strategy includes an active magnetorheological damper to actuate on the system. The control force of the damper is a function of the electric current applied in the coil of the damper, that is based on the force given by the controller and on the velocity of the damper piston displacement. Numerical simulations demonstrate the effectiveness of the control strategy in leading the system from any initial condition to a desired orbit, and considering the mathematical model of the damper (MR), it was possible to control the force of the shock absorber (MR), by controlling the applied electric current in the coils of the damper. © 2012 Foundation for Scientific Research and Technological Innovation.
Resumo:
The asymptotic behavior of a class of coupled second-order nonlinear dynamical systems is studied in this paper. Using very mild assumptions on the vector-field, conditions on the coupling parameters that guarantee synchronization are provided. The proposed result does not require solutions to be ultimately bounded in order to prove synchronization, therefore it can be used to study coupled systems that do not globally synchronize, including synchronization of unbounded solutions. In this case, estimates of the synchronization region are obtained. Synchronization of two-coupled nonlinear pendulums and two-coupled Duffing systems are studied to illustrate the application of the proposed theory.
Resumo:
We investigate chaotic, memory, and cooling rate effects in the three-dimensional Edwards-Anderson model by doing thermoremanent (TRM) and ac susceptibility numerical experiments and making a detailed comparison with laboratory experiments on spin glasses. In contrast to the experiments, the Edwards-Anderson model does not show any trace of reinitialization processes in temperature change experiments (TRM or ac). A detailed comparison with ac relaxation experiments in the presence of dc magnetic field or coupling distribution perturbations reveals that the absence of chaotic effects in the Edwards-Anderson model is a consequence of the presence of strong cooling rate effects. We discuss possible solutions to this discrepancy, in particular the smallness of the time scales reached in numerical experiments, but we also question the validity of the Edwards-Anderson model to reproduce the experimental results.
Resumo:
This paper contains a study of the synchronization by homogeneous nonlinear driving of systems that are symmetric in phase space. The main consequence of this symmetry is the ability of the response to synchronize in more than just one way to the driving systems. These different forms of synchronization are to be understood as generalized synchronization states in which the motions of drive and response are in complete correlation, but the phase space distance between them does not converge to zero. In this case the synchronization phenomenon becomes enriched because there is multistability. As a consequence, there appear multiple basins of attraction and special responses to external noise. It is shown, by means of a computer simulation of various nonlinear systems, that: (i) the decay to the generalized synchronization states is exponential, (ii) the basins of attraction are symmetric, usually complicated, frequently fractal, and robust under the changes in the parameters, and (iii) the effect of external noise is to weaken the synchronization, and in some cases to produce jumps between the various synchronization states available
Resumo:
Cellular automata are models for massively parallel computation. A cellular automaton consists of cells which are arranged in some kind of regular lattice and a local update rule which updates the state of each cell according to the states of the cell's neighbors on each step of the computation. This work focuses on reversible one-dimensional cellular automata in which the cells are arranged in a two-way in_nite line and the computation is reversible, that is, the previous states of the cells can be derived from the current ones. In this work it is shown that several properties of reversible one-dimensional cellular automata are algorithmically undecidable, that is, there exists no algorithm that would tell whether a given cellular automaton has the property or not. It is shown that the tiling problem of Wang tiles remains undecidable even in some very restricted special cases. It follows that it is undecidable whether some given states will always appear in computations by the given cellular automaton. It also follows that a weaker form of expansivity, which is a concept of dynamical systems, is an undecidable property for reversible one-dimensional cellular automata. It is shown that several properties of dynamical systems are undecidable for reversible one-dimensional cellular automata. It shown that sensitivity to initial conditions and topological mixing are undecidable properties. Furthermore, non-sensitive and mixing cellular automata are recursively inseparable. It follows that also chaotic behavior is an undecidable property for reversible one-dimensional cellular automata.
Resumo:
Chaotic behaviour is one of the hardest problems that can happen in nonlinear dynamical systems with severe nonlinearities. It makes the system's responses unpredictable. It makes the system's responses to behave similar to noise. In some applications it should be avoided. One of the approaches to detect the chaotic behaviour is nding the Lyapunov exponent through examining the dynamical equation of the system. It needs a model of the system. The goal of this study is the diagnosis of chaotic behaviour by just exploring the data (signal) without using any dynamical model of the system. In this work two methods are tested on the time series data collected from AMB (Active Magnetic Bearing) system sensors. The rst method is used to nd the largest Lyapunov exponent by Rosenstein method. The second method is a 0-1 test for identifying chaotic behaviour. These two methods are used to detect if the data is chaotic. By using Rosenstein method it is needed to nd the minimum embedding dimension. To nd the minimum embedding dimension Cao method is used. Cao method does not give just the minimum embedding dimension, it also gives the order of the nonlinear dynamical equation of the system and also it shows how the system's signals are corrupted with noise. At the end of this research a test called runs test is introduced to show that the data is not excessively noisy.
Resumo:
It has become clear over the last few years that many deterministic dynamical systems described by simple but nonlinear equations with only a few variables can behave in an irregular or random fashion. This phenomenon, commonly called deterministic chaos, is essentially due to the fact that we cannot deal with infinitely precise numbers. In these systems trajectories emerging from nearby initial conditions diverge exponentially as time evolves)and therefore)any small error in the initial measurement spreads with time considerably, leading to unpredictable and chaotic behaviour The thesis work is mainly centered on the asymptotic behaviour of nonlinear and nonintegrable dissipative dynamical systems. It is found that completely deterministic nonlinear differential equations describing such systems can exhibit random or chaotic behaviour. Theoretical studies on this chaotic behaviour can enhance our understanding of various phenomena such as turbulence, nonlinear electronic circuits, erratic behaviour of heart and brain, fundamental molecular reactions involving DNA, meteorological phenomena, fluctuations in the cost of materials and so on. Chaos is studied mainly under two different approaches - the nature of the onset of chaos and the statistical description of the chaotic state.