973 resultados para Contemporary Portuguese novel
Resumo:
Three-dimensional QSAR studies for N-4-arylacryloylpiperazin-1-yl-phenyl-oxazolidinones were conducted using TSAR 3.3. The in vitro activities (MICs) of the compounds against Staphylococcus aureus ATCC 25923 exhibited a strong correlation with the prediction made by the model developed in the present study.
Resumo:
In this thesis, the genetic variation of human populations from the Baltic Sea region was studied in order to elucidate population history as well as evolutionary adaptation in this region. The study provided novel understanding of how the complex population level processes of migration, genetic drift, and natural selection have shaped genetic variation in North European populations. Results from genome-wide, mitochondrial DNA and Y-chromosomal analyses suggested that the genetic background of the populations of the Baltic Sea region lies predominantly in Continental Europe, which is consistent with earlier studies and archaeological evidence. The late settlement of Fennoscandia after the Ice Age and the subsequent small population size have led to pronounced genetic drift, especially in Finland and Karelia but also in Sweden, evident especially in genome-wide and Y-chromosomal analyses. Consequently, these populations show striking genetic differentiation, as opposed to much more homogeneous pattern of variation in Central European populations. Additionally, the eastern side of the Baltic Sea was observed to have experienced eastern influence in the genome-wide data as well as in mitochondrial DNA and Y-chromosomal variation – consistent with linguistic connections. However, Slavic influence in the Baltic Sea populations appears minor on genetic level. While the genetic diversity of the Finnish population overall was low, genome-wide and Y-chromosomal results showed pronounced regional differences. The genetic distance between Western and Eastern Finland was larger than for many geographically distant population pairs, and provinces also showed genetic differences. This is probably mainly due to the late settlement of Eastern Finland and local isolation, although differences in ancestral migration waves may contribute to this, too. In contrast, mitochondrial DNA and Y-chromosomal analyses of the contemporary Swedish population revealed a much less pronounced population structure and a fusion of the traces of ancient admixture, genetic drift, and recent immigration. Genome-wide datasets also provide a resource for studying the adaptive evolution of human populations. This study revealed tens of loci with strong signs of recent positive selection in Northern Europe. These results provide interesting targets for future research on evolutionary adaptation, and may be important for understanding the background of disease-causing variants in human populations.
Resumo:
Metabolic fate of menthofuran (II) in rats was investigated. Menthofuran (II) was administered orally (200 mg/kg of the body weight/day) to rats for 3 days. The following metabolites were isolated from the urine of these animals: p-cresol (VI), 5-methyl-2-cyclohexen-1- one (VII), 3-methylcyclohexanone (VIII), 3-methylcyclohexanol (IX), 4- hydroxy-4-methyl-2-cyclohexen-1-one (V), geranic acid (XI), neronic acid (XII), benzoic acid (XIII), and 2-[2'-keto-4'- methylcyclohexyl]propionic acid (X). Incubation of menthofuran (II) with phenobarbital-induced rat liver microsomes in the presence of NADPH and oxygen resulted in the formation of a metabolite tentatively identified as 2-Z-(2'-keto-4'-methylcyclohexylidene)propanal (III; alpha,beta-unsaturated-gamma-keto-aldehyde). The structure assigned was further supported by trapping this metabolite (III) as a cinnoline derivative. Phenobarbital-induced rat liver microsomes also converted 4- methyl-2-cyclohexenone (IV) to 4-hydroxy-4-methyl-2-cyclohexenone (V) and p-cresol (VI) in the presence of NADPH and oxygen. On the basis of both in vivo and in vitro studies, a possible mechanism for the formation of p-cresol from menthofuran has been proposed.
Resumo:
Design and synthesis of a novel 3-hydroxy-cyclobut-3-ene-1,2-dione derivatives are reported and their in vitro thyroid hormone receptor selectivity has been evaluated in the thyroid luciferase receptor assay. The 3-[3,5-dichloro-4-(4-hydroxy-3-isopropylphenoxy)-phenylamino]-4-hydroxy-cyclobut-3-ene-1,2-dione 21 has shown selectivity towards thyroid hormone receptor β.
Resumo:
A novel racemization observed in the Vitamin B6-amino acid Schiff base complexes, aquo (5'-phosphopyridoxylidene-l-tyrosinato) copper(II) and aquo (5'-phosphopyridoxylidene-l-phenylalaninato) copper(II) is described. The racemization taking place in solution under mild acidic conditions (pH 5-6) was confirmed by CD studies and the products were characterized by single crystal X-ray diffraction. The structures of both complexes show almost parallel orientation of the aromatic side chain and the pyridoxal II-system. The activation of the αCsingle bondH group due to the intermolecular II- interaction is probably the reason for the unusual racemization observed.
Resumo:
Neurotrophic factors (NTFs) are secreted proteins which promote the survival of neurons, formation and maintenance of neuronal contacts and regulate synaptic plasticity. NTFs are also potential drug candidates for the treatment of neurodegenerative diseases. Parkinson’s disease (PD) is mainly caused by the degeneration of midbrain dopaminergic neurons. Current therapies for PD do not stop the neurodegeneration or repair the affected neurons. Thus, search of novel neurotrophic factors for midbrain dopaminergic neurons, which could also be used as therapeutic proteins, is highly warranted. In the present study, we identified and characterized a novel protein named conserved dopamine neurotrophic factor (CDNF), a homologous protein to mesencephalic astrocyte-derived neurotrophic factor (MANF). Others have shown that MANF supports the survival of embryonic midbrain dopaminergic neurons in vitro, and protects cultured cells against endoplasmic reticulum (ER) stress. CDNF and MANF form a novel evolutionary conserved protein family with characteristic eight conserved cysteine residues in their primary structure. The vertebrates have CDNF and MANF encoding genes, whereas the invertebrates, including Drosophila and Caenorhabditis have a single homologous CDNF/MANF gene. In this study we show that CDNF and MANF are secreted proteins. They are widely expressed in the mammalian brain, including the midbrain and striatum, and in several non-neuronal tissues. We expressed and purified recombinant human CDNF and MANF proteins, and tested the neurotrophic activity of CDNF on midbrain dopaminergic neurons using a 6-hydroxydopamine (6-OHDA) rat model of PD. In this model, a single intrastriatal injection of CDNF protected midbrain dopaminergic neurons and striatal dopaminergic fibers from the 6-OHDA toxicity. Importantly, an intrastriatal injection of CDNF also restored the functional activity of the nigrostriatal dopaminergic system when given after the striatal 6-OHDA lesion. Thus, our study shows that CDNF is a potential novel therapeutic protein for the treatment of PD. In order to elucidate the molecular mechanisms of CDNF and MANF activity, we resolved their crystal structure. CDNF and MANF proteins have two domains; an amino (N)-terminal saposin-like domain and a presumably unfolded carboxy (C)-terminal domain. The saposin-like domain, which is formed by five α-helices and stabilized by three intradomain disulphide bridges, may bind to lipids or membranes. The C-terminal domain contains an internal cysteine bridge in a CXXC motif similar to that of thiol/disulphide oxidoreductases and isomerases, and may thus facilitate protein folding in the ER. Our studies suggest that CDNF and MANF are novel potential therapeutic proteins for the treatment of neurodegenerative diseases. Future studies will reveal the neurotrophic and cytoprotective mechanisms of CDNF and MANF in more detail.
Resumo:
The Golgi complex is a central organelle of the secretory pathway, responsible for a range of post-translational modifications, as well as for membrane traffic to the plasma membrane and to the endosomal-lysosomal pathway. In addition, this organelle has roles in cell migration, in the regulation of traffic, and as a mitotic check point. The structure of the Golgi complex is highly dynamic and able to respond to the amount of cargo being transported and the stage of the cell cycle. The Golgi proteome reflects the functions and structure of this organelle, and can be divided into three major groups: the Golgi resident proteins (e.g. modification enzymes), the Golgi matrix proteins (involved in structure and tethering events), and trafficking proteins (e.g. vesicle coat proteins and Rabs). The Golgi proteome has been studied on several occasions, from both rat liver and mammary gland Golgi membranes using proteomic approaches, but still little more than half of the estimated Golgi proteome is known. Nevertheless, methodological improvements and introduction of shotgun proteomics have increased the number of identified proteins, and especially the number of identified transmembrane proteins. Cartilage, even though not a typical tissue in which to study membrane traffic, secretes large amounts of extracellular matrix proteins that are extensively modified, especially by amino acid hydroxylation, glycosylation and sulfation. Furthermore, the cartilage ECM contains several, large oligomeric proteins (such as collagen II) that are difficult to assemble and transport. Indeed, cartilage has been shown to be susceptible to changes both in secretory pathway (e.g. the COPII coat assembly) and in post-translational modifications (e.g. heparan sulfate formation). Dental follicle, and the periodontal ligament (PDL) that it forms, are another type of connective tissue, and they have a role in anchoring teeth to bone. This anchorage is achieved by numerous matrix fibres that connect the bone matrix with the cementum. These tissues have in common the secretion of large matrix molecules. In this study the Golgi proteome was analysed from purified, stacked Golgi membranes isolated from rat liver. The identified, extensive proteome included a protein similar to Ab2-095, or Golgi protein 49kDa (GoPro49), which was shown to localise to the Golgi complex as an EGFP fusion protein. Surprisingly, in situ hybridisation showed the GoPro49 expression to be highly restricted to different mesenchymal tissues, especially in cartilage, and this expression pattern was clearly developmentally regulated. In addition to cartilage, GoPro49 was also expressed in the dental follicle, but was not observed in the mature PDL. Importantly, GoPro49 is the first specific marker for the dental follicle. Endogenous GoPro49 protein co-localised with β-COP in both chondrosarcoma and primary dental follicle cell lines. The COPI staining in these cells was highly dynamic, showing a number of tubules. This may reflect the type of secretory cargo they secrete. Currently GoPro49 is the only Golgi protein with such a restricted expression pattern.
Resumo:
A novel compound obtained by the oxidation of the title compound with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone has been assigned structure (5) on the basis of spectral data and X-ray crystal structure analysis.
Resumo:
Glycodelin A (GdA) is one of the progesterone inducible endometrial factors that protect the fetal semiallograft from maternal immune rejection. The immumoregulatory effects of GdA are varied, with diverse effects on the fate and function of most immune cell types. Its effects on T cells are particularly relevant as it is capable of regulating T cell activation, differentiation, as well as apoptosis. We have previously reported that GdA triggers mitochondrial stress and apoptosis in activated T cells by a mechanism that is distinct and independent of its effects on T cell activation. In this study we describe the characterization of a cell surface receptor for GdA on T cells. Our results reveal a novel calcium-independent galactose-binding lectin activity of GdA, which is responsible for its apoptogenic function. This discovery adds GdA to a select group of soluble immunoregulatory lectins that operate within the feto-placental compartment, the only other members being the galectin family proteins. We also report for the first time that both CD4(+) and CD8(+) T cell subsets are equally susceptible to inhibition with GdA, mediated by its novel lectin activity. We demonstrate that GdA selectively recognizes complex-type N-linked glycans on T cell surface glycoproteins. and propose that the galectin-1 glycoprotein receptor CD7 maybe a novel target for GdA on T cells. This study, for the first time, links the lectin activity of GdA to its biological function.
Resumo:
An unusual copper(II) complex [Cu(L-1a)(2)Cl-2] CH3OH center dot H2O center dot H3O+Cl- (1a) was isolated from a solution of a novel tricopper(II) complex [Cu-3(HL1)Cl-2]Cl-3 center dot 2H(2)O (1) in methanol. where L-1a is 3-(2-pyridyl)triazolo [1,5-a]-pyridine, and characterized with single crystal X-ray diffraction study. The tricopper(II) complex of potential ligand 1,5-bis(di-2-pyridyl ketone) carbohydrazone (H2L1) was synthesized and physicochemically characterized, while the formation of the complex la was followed by time-dependant monitoring of the UV-visible spectra. which reveals degradation of ligand backbone as intensity loss of bands corresponding to O -> Cu(II) charge transfer.
Resumo:
In the present study a series of 4-isopropylthiazole-2-carbohydrazide analogs, derived clubbed oxadiazole-thiazole and triazole-thiazole derivatives have been synthesized and characterized by IR, H-1 NMR, C-13 NMR, elemental and mass spectral analyses. The synthesized compounds were evaluated for their preliminary in vitro antibacterial, antifungal and antitubercular activity against Mycobacterium tuberculosis H(37)Rv strain by broth dilution assay method. The synthesized compounds 7a, 7b, 7d and 4 showed an antitubercular efficacy considerably greater than that of the parent 4-isopropyl-1,3-thiazole-2-carbohydrazide 1, suggesting that the substituted 4-isopropylthiazole-2-carbohydrazide moiety plays an important role in enhancing the antitubercular properties of this class of compounds. Compounds 2c, 3, 4, 6d, 7a and 7b exhibited good or moderate antibacterial and antifungal activity. Compounds 4 and 7b showed appreciable cytotoxicity at a concentration of 250 mu M.
Resumo:
This paper describes a practice-led methodology that combines contemporary art theory and processes, as well as concepts of fan studies to construct a space for the critical and creative exploration of screen culture. The research promotes new possibilities for purposeful creative engagements with the screen, framed through the lens of what I term the digital-bricoleur. This performative, link-making approach documents the complicit tendencies that arise out of my affective relationship with screen culture, mapping out a cultural terrain in which I can creatively and critically ‘play’. The creative exploitation of this improvisational and aleatory activity then forms the creative research outputs. It appropriates and reconfigures content from screen culture, creating digital video installations aimed at engendering new experiences and critical interpretations of screen culture.