972 resultados para Condutividade iônica
Resumo:
Uma técnica para a inversão de dados magnetotelúricos é apresentada neste trabalho. Dois tipos de dados são tratados aqui, dados gerados por modelos unidimensionais com anisotropia na condutividade das camadas e dados bi-dimensionais de levantamentos do método EMAP (ElectroMagnetic Array Profiling). Em ambos os casos fazemos a inversão usando vínculos aproximados de igualdade para estabilizar as soluções. Mostramos as vantagens e as limitações do uso destes vínculos nos processos de inversão. Mesmo vinculada a inversão ainda pode se tornar instável. Para inverter os dados 2-D do EMAP, apresentamos um processo que consiste de três partes: 1 – A construção de um modelo interpretativo e da aproximação inicial para a inversão a partir dos dados de seções de resistividade aparente filtradas pelo processo de filtragem do EMAP; 2 – a inclusão de uma camada de corpos pequenos aflorantes, chamada de camada destatic shift, aos modelos interpretativos para resolver as fontes de distorções estáticas que contaminam os dados; 3 – o uso dos vínculos aproximados de igualdade absoluta para estabilizar as soluções. Os dois primeiros passos nos permitem extrair o máximo de informação possível dos dados, enquanto que o uso dos vínculos de igualdade nos permite incluir informação a priori que possua significado físico e geológico. Com estes passos, obtemos uma solução estável e significativa. Estudaremos o método em dados sintéticos de modelos bi-dimensionais e em dados reais de uma linha de EMAP feita na Bacia do Paraná.
Resumo:
Rochas contendo metálicos disseminados ou partículas de argila em ambiente natural onde soluções eletrolíticas normalmente preenchem os poros das rochas, exibem um tipo de polarização em baixas freqüências conhecido como polarização induzida. Nesta tese foi desenvolvido um novo modelo para descrever o fenômeno de polarização das rochas, não apenas em baixas freqüências, mas compreendendo todo o espectro eletromagnético, possível de utilização na prospecção geoelétrica. Este novo modelo engloba a maioria dos modelos utilizados até o momento como casos especiais, além de superar as limitações dos mesmos. Seu circuito analógico inclui uma impedância não linear do tipo r (iwtf)-n que simula o efeito das superfícies rugosas das interfaces entre os grãos bloqueadores (partículas metálicas e/ou de argilas) e o eletrólito. A impedância de Warburg generalizada está em série com a resistência dos grãos bloqueadores da passagem de corrente e em paralelo com a impedância da dupla camada associada a essas interfaces. Esta combinação está em série com a resistência do eletrólito nas passagens dos poros bloqueados. Os canais não bloqueados são representados por uma resistência que corresponde à resistividade normal CC da rocha. A combinação desta resistência com a capacitância "global" da rocha é finalmente conectada em paralelo ao resto do circuito mencionado acima. Os parâmetros deste modelo incluem a resistividade CC (p0), a cargueabilidade (m), três tempos de relaxação (t, Tf and T2), um fator de resistividade de grãos (δr), e o expoente de freqüência (η). O tempo de relaxação fractal (Tf), e o expoente de frequencia (η) estão relacionados à geometria fractal das interfaces rugosas entre os minerais condutivos (grãos metálicos e/ou partículas de argila bloqueando os canais dos poros) e o eletrólito. O tempo de relaxação (T) é um resultado da relaxação em baixa freqüência das duplas camadas elétricas formadas nas interfaces eletrólito-cristais, enquanto (T0) é o tempo de relaxação macroscópico da amostra como um todo. O fator de resistividade dos grãos (δr) relaciona a resistividade dos grãos condutivos com o valor de resistividade CC da rocha. A resistividade CC da rocha (p0), e δr estão relacionados à porosidade, à condutividade do eletrólito e às relações mineralógicas entre a matriz e os grãos condutivos. O modelo foi testado sobre um intervalo largo de freqüências contra dados experimentais de amplitude e fase da resistividade bem como para dados de constante dielétrica complexa. Os dados utilizados neste trabalho foram obtidos a partir da digitalização de dados experimentais publicados, obtidos por diversos autores e englobando amostras de rochas sedimentares, ígneas e metam6rficas. É mostrado neste trabalho que os parâmetros deste modelo permitem identificar diferenças texturais e mineralógicas nas rochas. Bote modelo foi introduzido, primeiramente, como propriedade intrínseca de um semiespaço homogêneo sendo demonstrado, neste trabalho, que a resposta observada em superfície reflete as propriedades intrínsecas do meio polarizável, sendo o acoplamento eletromagnético desprezível em freqüências menores que 104 Hz. Em seguida, o meio polarizável foi embebido em um pacote de N camadas sendo demonstrado que os parâmetros fractais do meio polarizável podem ser obtidos do levantamento em superfície para diferentes espessuras dessa camada. Isto justifica a utilização pura e simples de modelos de polarização desenvolvidos para amostras em laboratório para ajustar dados de campo, o que vem sendo feito sem uma justificativa bem fundamentada. Estes resultados demonstram a importância para a prospecção geolétrica do modelo proposto nesta tese.
Resumo:
Localizar em subsuperfície a região que mais influencia nas medidas obtidas na superfície da Terra é um problema de grande relevância em qualquer área da Geofísica. Neste trabalho, é feito um estudo sobre a localização dessa região, denominada aqui zona principal, para métodos eletromagnéticos no domínio da freqüência, utilizando-se como fonte uma linha de corrente na superfície de um semi-espaço condutor. No modelo estudado, tem-se, no interior desse semi-espaço, uma heterogeneidade na forma de camada infinita, ou de prisma com seção reta quadrada e comprimento infinito, na direção da linha de corrente. A diferença entre a medida obtida sobre o semi-espaço contendo a heterogeneidade e aquela obtida sobre o semi-espaço homogêneo, depende, entre outros parâmetros, da localização da heterogeneidade em relação ao sistema transmissor-receptor. Portanto, mantidos constantes os demais parâmetros, existirá uma posição da heterogeneidade em que sua influência é máxima nas medidas obtidas. Como esta posição é dependente do contraste de condutividade, das dimensões da heterogeneidade e da freqüência da corrente no transmissor, fica caracterizada uma região e não apenas uma única posição em que a heterogeneidade produzirá a máxima influência nas medidas. Esta região foi denominada zona principal. Identificada a zona principal, torna-se possível localizar com precisão os corpos que, em subsuperfície, provocam as anomalias observadas. Trata-se geralmente de corpos condutores de interesse para algum fim determinado. A localização desses corpos na prospecção, além de facilitar a exploração, reduz os custos de produção. Para localizar a zona principal, foi definida uma função Detetabilidade (∆), capaz de medir a influência da heterogeneidade nas medidas. A função ∆ foi calculada para amplitude e fase das componentes tangencial (Hx) e normal (Hz) à superfície terrestre do campo magnético medido no receptor. Estudando os extremos da função ∆ sob variações de condutividade, tamanho e profundidade da heterogeneidade, em modelos unidimensionais e bidimensionais, foram obtidas as dimensões da zona principal, tanto lateralmente como em profundidade. Os campos eletromagnéticos em modelos unidimensionais foram obtidos de uma forma híbrida, resolvendo numericamente as integrais obtidas da formulação analítica. Para modelos bidimensionais, a solução foi obtida através da técnica de elementos finitos. Os valores máximos da função ∆, calculada para amplitude de Hx, mostraram-se os mais indicados para localizar a zona principal. A localização feita através desta grandeza apresentou-se mais estável do que através das demais, sob variação das propriedades físicas e dimensões geométricas, tanto dos modelos unidimensionais como dos bidimensionais. No caso da heterogeneidade condutora ser uma camada horizontal infinita (caso 1D), a profundidade do plano central dessa camada vem dada pela relação po = 0,17 δo, onde po é essa profundidade e δo o "skin depth" da onda plana (em um meio homogêneo de condutividade igual à do meio encaixante (σ1) e a freqüência dada pelo valor de w em que ocorre o máximo de ∆ calculada para a amplitude de Hx). No caso de uma heterogeneidade bidimensional (caso 2D), as coordenadas do eixo central da zona principal vem dadas por do = 0,77 r0 (sendo do a distância horizontal do eixo à fonte transmissora) e po = 0,36 δo (sendo po a profundidade do eixo central da zona principal), onde r0 é a distância transmissor-receptor e δo o "skin depth" da onda plana, nas mesmas condições já estipuladas no caso 1D. Conhecendo-se os valores de r0 e δo para os quais ocorre o máximo de ∆, calculado para a amplitude de Hx, pode-se determinar (do, po). Para localizar a zona principal (ou, equivalentemente, uma zona condutora anômala em subsuperfície), sugere-se um método que consiste em associar cada valor da função ∆ da amplitude de Hx a um ponto (d, p), gerado através das relações d = 0,77 r e p = 0,36 δ, para cada w, em todo o espectro de freqüências das medidas, em um dado conjunto de configurações transmissor-receptor. São, então, traçadas curvas de contorno com os isovalores de ∆ que vão convergir, na medida em que o valor de ∆ se aproxima do máximo, sobre a localização e as dimensões geométricas aproximadas da heterogeneidade (zona principal).
Resumo:
Foi estudado a viabilidade de aplicação do arranjo coplanar de bobinas nas sondas de perfilagem em poço por indução eletromagnética. Paralelamente foram geradas as respostas do convencional arranjo coaxial, que é o amplamente utilizado nas sondas comerciais, com o propósito de elaborar uma análise comparativa. Através da solução analítica (meios homogêneos) e semi-analítica (meios heterogêneos) foram geradas inicialmente as respostas para modelos mais simples, tais como os do (1) meio homogêneo, isotrópico e ilimitado; (2) uma casca cilíndrica simulando a frente de invasão; (3) duas cascas cilíndricas para simular o efeito annulus; (4) uma interface plana e dois semi-espaços simulando o contato entre duas camadas espessas e (5) uma camada plano-horizontal e dois semi-espaços iguais. Apesar da simplicidade destes modelos, eles permitem uma análise detalhada dos efeitos que alguns parâmetros geoelétricos têm sobre as respostas. Aí então, aplicando ainda as condições de contorno nas fronteiras (Sommerfeld Boundary Value Problem), obtivemos as soluções semi-analíticas que nos permitiram simular as respostas em modelos relativamente mais complexos, tais como (1) zonas de transição gradacional nas frentes de invasão; (2) seqüências de camadas plano-paralelas horizontais e inclinadas; (3) seqüências laminadas que permitem simular meios anisotrópicos e (4) passagem gradacional entre duas camadas espessas. Concluimos que o arranjo coplanar de bobinas pode ser uma ferramenta auxiliar na (1) demarcação das interfaces de camadas espessas; (2) posicionamento dos reservatórios de pequenas espessuras; (3) avaliação de perfis de invasão e (4) localizar variações de condutividade azimutalmente.
Resumo:
Na produção de petróleo é importante o monitoramento dos parâmetros do reservatório (permeabilidade, porosidade, saturação, pressão, etc) para o seu posterior gerenciamento. A variação dos parâmetros dinâmicos do reservatório induz variações na dinâmica do fluxo no reservatório, como por exemplo, perdas na pressão, dificultando o processo de extração do óleo. A injeção de fluidos aumenta a energia interna do reservatório e incrementa a pressão, estimulando o movimento do óleo em direção aos poços de extração. A tomografia eletromagnética poço-a-poço pode se tomar em uma técnica bastante eficaz no monitoramento dos processos de injeção, considerando-se o fato de ser altamente detectável a percolação de fluidos condutivos através das rochas. Esta tese apresenta o resultado de um algoritmo de tomografia eletromagnética bastante eficaz aplicado a dados sintéticos. O esquema de imageamento assume uma simetria cilíndrica em torno de uma fonte constituída por um dipolo magnético. Durante o processo de imageamento foram usados 21 transmissores e 21 receptores distribuídos em dois poços distanciados de 100 metros. O problema direto foi resolvido pelo método dos elementos finitos aplicado à equação de Helmhotz do campo elétrico secundário. O algoritmo resultante é válido para qualquer situação, não estando sujeito às restrições impostas aos algoritmos baseados nas aproximações de Born e Rytov. Por isso, pode ser aplicado eficientemente em qualquer situação, como em meios com contrastes de condutividade elétrica variando de 2 a 100, freqüências de 0.1 a 1000.0 kHz e heterogeneidades de qualquer dimensão. O problema inverso foi resolvido por intermédio do algoritmo de Marquardt estabilizado. A solução é obtida iterativamente. Os dados invertidos, com ruído Gaussiano aditivo, são as componentes em fase e em quadratura do campo magnético vertical. Sem o uso de vínculos o problema é totalmente instável, resultando em imagens completamente borradas. Duas categorias de vínculos foram usadas: vínculos relativos, do tipo suavidade, e vínculos absolutos. Os resultados obtidos mostram a eficiência desses dois tipos de vínculos através de imagens nítidas de alta resolução. Os tomogramas mostram que a resolução é melhor na direção vertical do que na horizontal e que é também função da freqüência. A posição e a atitude da heterogeneidade é bem recuperada. Ficou também demonstrado que a baixa resolução horizontal pode ser atenuada ou até mesmo eliminada por intermédio dos vínculos.
Resumo:
Na maioria dos métodos de exploração geofísica, a interpretação é feita assumindo-se um modelo da Terra uniformemente estratificado. Todos os métodos de inversão, inclusive o de dados eletromagnéticos, exigem técnica de modelamento teórico de modo a auxiliar a interpretação. Na literatura os dados são geralmente interpretados em termos de uma estrutura condutiva unidimensional; comumente a Terra é assumida ser horizontalmente uniforme de modo que a condutividade é função somente da profundidade. Neste trabalho uma técnica semi-analítica de modelagem desenvolvida por Hughes (1973) foi usada para modelar a resposta magnética de duas camadas na qual a interface separando as camadas pode ser representada por uma expansão em série de Fourier. A técnica envolve um método de perturbação para encontrar o efeito de um contorno senoidal com pequenas ondulações. Como a perturbação é de primeira ordem a solução obtida é linear, podemos então usar o princípio da superposição e combinar soluções para várias senoides de forma a obter a solução para qualquer dupla camada expandida em série de Fourier. Da comparação com a técnica de elementos finitos, as seguintes conclusões podem ser tiradas: • Para um modelo de dupla camada da Terra, as camadas separadas por uma interface cuja profundidade varia senoidalmente em uma direção, as respostas eletromagnética são muito mais fortes quando a espessura da primeira camada é da ordem do skin depth da onda eletromagnética no meio, e será tanto maior quanto maior for o contraste de condutividade entre as camadas; • Por outro lado, a resistividade aparente para este modelo não é afetada pela mudança na frequência espacial (v) do contorno; • Em caso do uso da solução geral para qualquer dupla camada na Terra cuja interface possa ser desenvolvida em série de Fourier, esta técnica produziu bons resultados quando comparado com a técnica de elementos finitos. A linerização restringe a aplicação da técnica para pequenas estruturas, apesar disso, uma grande quantidade de estruturas pode ser modelada de modo simples e com tempo computacional bastante rápido; • Quando a dimensão da primeira camada possui a mesma ordem de grandeza da estrutura, esta técnica não é recomendada, porque para algumas posições de sondagem, as curvas de resistividade aparente obtidas mostram um pequeno deslocamento quando comparadas com as curvas obtidas por elementos finitos.
Resumo:
Desenvolveu-se neste trabalho um novo modelo de avaliação quantitativa para arenitos argilosos, baseado na bibliografia e no estudo da disposição dos argilominerais dentro dos poros das rochas reservatório. Este novo modelo leva em consideração a contribuição de duas condutividades extras, além da condutividade eletrolítica das rochas: uma se deve à contribuição efetiva da condutância superficial dos argilominerais, aumentada ou diminuida em função da capacidade de troca catiônica dos mesmos, e outra independente e em paralelo, devido a condutância que se desenvolve em uma rede microporosa contínua formada por argilominerais sobre o arcabouço das rochas. Para o estudo da validade da equação proposta, foram feitos vários gráficos comparativos entre as equações e/ou modelos existentes n” bibliografia especializada, deles resultando ótimas correlações, principalmente com a tradicional equação de Waxman & Smits. Foi feita uma comparação do novo modelo em três seções distintas do Campo de Ubarana, Rio Grande do Norte, duas com baixas resistividades supostamente com hidrocarbonetos e uma outra efetivamente produtora. Verificou-se que as baixas resistividades resultam do fato das seções estudadas serem subsaturadas, com menos de 50% de óleo e aproximadamente igual ou maior proporção de água relativamente salgada (85.000 ppm de NaCl equivalente). Esta mesma água, sem dúvida, muito contribui para as baixas resistividades, por formar a fase eletricamente condutiva das referidas seções. Sendo a equação de Waxman & Smits mundialmente reconhecida, pode-se afirmar que a equação proposta neste trabalho tem consistência teórica e prática e para o caso particular do campo de Ubarana, mostrou-se mais coerente com o histórico de produção dos poços estudados, do que as demais equações existentes e testadas.
Resumo:
Dois dos principais objetivos da interpretação petrofísica de perfis são a determinação dos limites entre as camadas geológicas e o contato entre fluidos. Para isto, o perfil de indução possui algumas importantes propriedades: É sensível ao tipo de fluido e a distribuição do mesmo no espaço poroso; e o seu registro pode ser modelado com precisão satisfatória como sendo uma convolução entre a condutividade da formação e a função resposta da ferramenta. A primeira propriedade assegura uma boa caracterização dos reservatórios e, ao mesmo tempo, evidencia os contatos entre fluidos, o que permite um zoneamento básico do perfil de poço. A segunda propriedade decorre da relação quasi-linear entre o perfil de indução e a condutividade da formação, o que torna possível o uso da teoria dos sistemas lineares e, particularmente, o desenho de filtros digitais adaptados à deconvolução do sinal original. A idéia neste trabalho é produzir um algoritmo capaz de identificar os contatos entre as camadas atravessadas pelo poço, a partir da condutividade aparente lida pelo perfil de indução. Para simplificar o problema, o modelo de formação assume uma distribuição plano-paralela de camadas homogêneas. Este modelo corresponde a um perfil retangular para condutividade da formação. Usando o perfil de entrada digitalizado, os pontos de inflexão são obtidos numericamente a partir dos extremos da primeira derivada. Isto gera uma primeira aproximação do perfil real da formação. Este perfil estimado é então convolvido com a função resposta da ferramenta gerando um perfil de condutividade aparente. Uma função custo de mínimos quadrados condicionada é definida em termos da diferença entre a condutividade aparente medida e a estimada. A minimização da função custo fornece a condutividade das camadas. O problema de otimização para encontrar o melhor perfil retangular para os dados de indução é linear nas amplitudes (condutividades das camadas), mas uma estimativa não linear para os contatos entre as camadas. Neste caso as amplitudes são estimadas de forma linear pelos mínimos quadrados mantendo-se fixos os contatos. Em um segundo passo mantem-se fixas as amplitudes e são calculadas pequenas mudanças nos limites entre as camadas usando uma aproximação linearizada. Este processo é interativo obtendo sucessivos refinamentos até que um critério de convergência seja satisfeito. O algoritmo é aplicado em dados sintéticos e reais demonstrando a robustez do método.
Resumo:
A utilização dos métodos indutivos de propagação E.M. na exploração mineral em regiões tropicais, apresenta grandes dificuldades devido a presença de uma camada superficial condutiva (manto de intemperismo) comumente encontrada nestas regiões. Na região Amazônica, o manto apresenta-se bastante desenvolvido e condutivo, e em regiões semi-áridas, pode-se formar uma fina crosta superficial de sal. Em conseqüência disto, a interpretação dos dados E.M. obtidos para modelos que não consideram uma cobertura condutiva levam a erros consideráveis. Objetivando-se estudar os efeitos do manto sobre anomalias VLF devidas a corpos tabulares inclinados em contato com o manto (manto ohmico), foi realizada uma série de experimentos através do modelamento analógico, considerando-se diferentes parâmetros de resposta para o manto e o corpo. O manto de intemperismo foi simulado por soluções de cloreto de amônia (NH4Cl) dispostas horizontalmente e o corpo condutor por chapas de grafite colocadas em posições inclinadas verticalmente. Utilizou-se quatro corpos condutores e três mantos com diferentes espessuras e condutividades, simulando, desta forma, diversas situações geológicas. Os resultados são dados por simples situações dos corpos localizados em um meio não condutor (ar), onde os parâmetros variados são: profundidade do topo, condutividade e mergulho do corpo. Os efeitos da condutividade da cobertura são amplamente ilustrados e avaliados. Para a análise dos resultados, foi plotado um conjunto de curvas considerando-se os valores pico-a-pico das anomalias de "tilt angle" e de elipsidade. Os resultados foram sintetizados em um outro conjunto de curvas reunidas em diagramas de Argand. Estando ou não o manto presente, observou-se, tanto para o tilt angle quanto para a elipsidade, o efeito do aumento da profundidade é o de reduzir a magnitude pico-a-pico e a forma do pico da anomalia, fazendo com que este afaste-se do ponto de "cross-over". Para um condutor de mesma espessura, o aumento da condutividade causa um ligeiro aumento nas anomalias de tilt angle, e uma atenuação nas anomalias de elipsidade. O efeito geral na variação do mergulho do condutor é o de causar uma assimetria nos perfis de tilt angle e de elipsidade. O aumento da condutância do manto de intemperismo causa um acréscimo nas anomalias de elipsidade e uma ligeira diminuição nas anomalias de tilt angle; porém, a partir de um certo valor de condutância do manto (mantos mais condutivos) tanto as anomalias de tilt angle quanto as anomalias de elipsidade começam a atenuar. Há rotação de fase no sentido anti-horário, sendo mais intensa para grandes valores de número de indução do corpo. Na presença do manto, o corpo parece estar a uma profundidade inferior à verdadeira e a ser menos condutivo.
Resumo:
Resultados obtidos por cálculos Dirac-Fock correlacionados de 4 componentes para o fluoreto do elemento E119 (Eka-Frâncio) com base estável e precisa, livre de prolapso variacional, são reportados neste trabalho. No nível CCSD(T), a distância de equilíbrio Re, frequência harmônica ωe e energia de dissociação De são 2,432 Å, 354,97 cm-1 e 116,92 kcal mol-1, respectivamente. Também são reportados base livre de prolapso variacional de 4 componentes para o elemento 119, uma curva analítica de energia potencial precisa e o espectro vibracional a partir dos dados obtidos no nível CCSD(T). Nossos resultados sugerem que a molécula E119F deva ser menos iônica que seus fluoretos alcalinos homólogos mais leves, em contraste com o senso químico comum baseado nas propriedades periódicas - era de se esperar nesta molécula a ligação química mais iônica possível. Também encontramos que a correção do tipo modelo de carga para negligenciar as integrais do tipo SS resulta em erros insignificantes e acelera os cálculos cerca de 3 vezes no nível CCSD(T) e cerca de 4 vezes no nível DFT/B3LYP.
Resumo:
Este trabalho teve como objetivo estudar as águas do rio Madeira e seus principais tributários entre a cidade de Humaitá e sua foz no rio Amazonas. Foram analisados pH, condutividade, turbidez, íons maiores, elementos traço e isótopos de Sr nos períodos de seca, cheia e transição para a seca entre 2009 e 2010. As águas do Madeira, classificadas com brancas, são bicarbonatadas-cálcicas, têm pH entre 5 e 6 e são mais concentradas que as dos tributários. Estes têm águas de cor preta, mais ácidas e quimicamente heterogêneas, os da margem esquerda são quimicamente mais semelhantes as do Madeira, enquanto os da margem direita têm alta concentração em SiO2. Os cátions, Cl- e NO3- são mais concentrados na cheia o que sugere influência do solo, da vegetação e da composição da água da chuva (Cl-), enquanto HCO3-, SO42-, Al, Br e P, com maiores concentrações na seca, devem estar relacionados com a química das rochas. A SiO2 e os elementos terras raras (ETR) com concentrações elevadas na seca e na cheia, estão associados tanto a vegetação e ao solo como as rochas. A interação desses fatores é a causa da heterogeneidade química das águas. Contudo, a semelhança entre as águas dos tributários da margem esquerda e as do Madeira são consequência das rochas dos Andes serem a fonte dos sedimentos cenozóicos percolados por elas, enquanto a química das águas dos tributários da margem direita retrata a estabilidade tectônica, o intenso intemperismo e a baixa taxa de erosão das rochas do cráton Amazônico.
Resumo:
Nas últimas décadas, a prospecção por métodos eletromagnéticos vem-se constituindo numa técnica eficiente para prospecção mineral. O objetivo deste trabalho foi desenvolver um equipamento para prospecção eletromagnética quantitativa de corpos condutores, através do método dipolo-dipolo, podendo ainda ser usado em modelos reduzidos. Eletricamente, o sistema mede grandezas relacionadas ao acoplamento indutivo entre duas bobinas: transmissora e receptora. Elas são dispostas na superfície da terra, afastadas entre si, e a terra, desse modo, constitui o núcleo acoplador. Quando existem corpos condutores nas proximidades, estes são denunciados por alterações no comportamento do sinal induzido na bobina receptora. O equipamento compreende dois conjuntos: o transmissor e o receptor, além de acessórios. O transmissor gera um campo eletromagnético nas freqüências de 520 e 3.090 Hz, e um sinal de referência para o receptor, o qual é enviado através de um cabo. O receptor, inicialmente, separa o sinal induzido pelos campos secundários gerados por condutores, do campo normalmente recebido, quando a condutividade da subsuperfície é relativamente uniforme (campo primário). Em seguida, decompõe esse sinal em duas componentes ortogonais, uma em fase, e outra em quadratura com o campo primário. Através de duas escalas de precisão, as amplitudes dessas componentes são mostradas como percentagens do campo primário, com precisão de 1%. A sensibilidade do receptor é de 0,5 μV. O circuito eletrônico foi rigorosamente testado com preciso instrumental de laboratório. Em seguida, testou-se sua aplicação no Laboratório de Modelo Reduzido Eletromagnético do NCGG, refazendo-se experiências clássicas, encontradas na literatura especializada. No campo, foi experimentado próximo da cidade de Araci no Estado da Bahia, em áreas prospectadas pela "Rio Doce Geologia e Mineração S/A-DOCEGEO". Em ambos os casos, verificaram-se bons resultados.
Resumo:
Os métodos numéricos de Elementos Finitos e Equação Integral são comumente utilizados para investigações eletromagnéticas na Geofísica, e, para essas modelagens é importante saber qual algoritmo é mais rápido num certo modelo geofísico. Neste trabalho são feitas comparações nos resultados de tempo computacional desses dois métodos em modelos bidimensionais com heterogeneidades condutivas num semiespaço resistivo energizados por uma linha infinita de corrente (com 1000Hz de freqüência) e situada na superfície paralelamente ao "strike" das heterogeneidades. Após a validação e otimização dos programas analisamos o comportamento dos tempos de processamento nos modelos de corpos retangulares variandose o tamanho, o número e a inclinação dos corpos. Além disso, investigamos nesses métodos as etapas que demandam maior custo computacional. Em nossos modelos, o método de Elementos Finitos foi mais vantajoso que o de Equação Integral, com exceção na situação de corpos com baixa condutividade ou com geometria inclinada.
Resumo:
Utilizando-se dados magnetotelúricos (MT), foi obtida uma imagem geo-elétrica nítida da região do Juruá, Bacia do Solimões, na forma de seções geo-elétricas. Os dados de campo foram registrados ao longo de três linhas de 15 km, espaçadas de 3.5 km, recobrindo uma área de 100 km2. O espaçamento entre as 35 estações é irregular, variando de 400 m a 3500 m. A faixa de freqüências utilizada cobriu de 0.001 Hz até 300 Hz, o que permitiu investigar de 100 m até 60 km de profundidade. Os dados apresentam-se afetados pelo efeito de distorção estática. Para corrigir este efeito foi utilizada a mediana da resistividade do primeiro condutor, correspondente à Formação Solimões. Foi utilizado o invariante do tensor MT para interpretar a estrutura geo-elétrica do Juruá. As seções geo-elétricas foram obtidas a partir do agrupamento dos dados resultantes da transformação de Bostick e da inversão 1D de Occam, para cada estação. Foi identificada uma seqüência de camadas condutivas e resistivas, correspondentes ao pacote sedimentar, uma zona de falhas e o topo do embasamento geo-elétrico, caracterizando a Bacia do Solimões. Abaixo do embasamento geo-elétrico foram também identificados uma zona condutora, seguida por uma camada de baixa condutividade, a profundidades iguais ou superiores a 20 km. Esta camada é interpretada como sendo de composição de gabro, estando associada a processos de acreção vertical, intimamente ligados à estabilização crustal e espessamento da litosfera. Os resultados apresentam uma boa concordância com os perfis de resistividade de poços e dados sísmicos de superfície.
Resumo:
Este trabalho apresenta estudo geofísico de parte de orla fluvial sujeita à erosão, com o objetivo primordial de avaliar o seu uso na detecção de áreas degradadas pela erosão em estágio crítico, antes de seu desmoronamento. Esta área está situada ao longo de 600 m à margem do rio Guamá, entre a ponte do rio Tucunduba e o Porto de Canoagem, dentro do campus da Universidade Federal do Pará (UFPA), na cidade de Belém no Estado do Pará (Brasil). Conta, em alguns trechos, com diferentes tipos de contenção de erosão, entre os quais muro de concreto e sacos de cimento. A área é consequentemente, um laboratório para se testar a eficiência da Geofísica em detectar as zonas em que a ação da erosão, embora ainda não observável em superfície, atue, de modo a auxiliar obras de contenção da orla antes do seu colapso. Foram utilizados quatro métodos geofísicos: Potencial Espontâneo (SP), Eletrorresistividade, Slingram (LIN) e Radar de Penetração do Solo (GPR). As medidas foram levantadas durante a maré baixa e a maré alta na tentativa de mapear os caminhos preferenciais subsuperficiais para a entrada de água trazida pela maré alta e, por esse meio, para o trabalho erosivo. O efeito global da maré é aumentar as oscilações nas medidas de SP, Eletrorresistividade e LIN e aumentar a intensidade das reflexões obtidas com o GPR em relação às medidas obtidas com maré baixa. Na maré alta, as medidas mostram, em relação às medidas obtidas na maré baixa: I) Em zona com erosão, a redução da voltagem obtida com o método SP, a diminuição da resistividade obtida com imageamento realizado com o método da Eletrorresistividade, o aumento da condutividade LIN bem como tanto o aumento da intensidade das reflexões como a perturbação da continuidade dos refletores obtidos com o Método GPR II) Em zona com contenção, o aumento da voltagem SP, o aumento da resistividade obtida com Eletrorresistividade, a diminuição da condutividade LIN e, finalmente, a atenuação de reflexões obtidas com o GPR e redução do efeito global da maré. A despeito das dificuldades, os resultados demonstram que a Geofísica pode ser uma ferramenta auxiliar na previsão de locais onde a queda erosiva do terreno provocado por ela está prestes a ocorrer bem como na análise da eficácia da obra de contenção realizada.