972 resultados para Computer algorithms.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis seeks to answer, if communication challenges in virtual teams can be overcome with the help of computer-mediated communication. Virtual teams are becoming more common work method in many global companies. In order for virtual teams to reach their maximum potential, effective asynchronous and synchronous methods for communication are needed. The thesis covers communication in virtual teams, as well as leadership and trust building in virtual environments with the help of CMC. First, the communication challenges in virtual teams are identified by using a framework of knowledge sharing barriers in virtual teams by Rosen et al. (2007) Secondly, the leadership and trust in virtual teams are defined in the context of CMC. The performance of virtual teams is evaluated in the case study by exploiting these three dimensions. With the help of a case study of two virtual teams, the practical issues related to selecting and implementing communication technologies as well as overcoming knowledge sharing barriers is being discussed. The case studies involve a complex inter-organisational setting, where four companies are working together in order to maintain a new IT system. The communication difficulties are related to inadequate communication technologies, lack of trust and the undefined relationships of the stakeholders and the team members. As a result, it is suggested that communication technologies are needed in order to improve the virtual team performance, but are not however solely capable of solving the communication challenges in virtual teams. In addition, suitable leadership and trust between team members are required in order to improve the knowledge sharing and communication in virtual teams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in machine learning methods enable increasingly the automatic construction of various types of computer assisted methods that have been difficult or laborious to program by human experts. The tasks for which this kind of tools are needed arise in many areas, here especially in the fields of bioinformatics and natural language processing. The machine learning methods may not work satisfactorily if they are not appropriately tailored to the task in question. However, their learning performance can often be improved by taking advantage of deeper insight of the application domain or the learning problem at hand. This thesis considers developing kernel-based learning algorithms incorporating this kind of prior knowledge of the task in question in an advantageous way. Moreover, computationally efficient algorithms for training the learning machines for specific tasks are presented. In the context of kernel-based learning methods, the incorporation of prior knowledge is often done by designing appropriate kernel functions. Another well-known way is to develop cost functions that fit to the task under consideration. For disambiguation tasks in natural language, we develop kernel functions that take account of the positional information and the mutual similarities of words. It is shown that the use of this information significantly improves the disambiguation performance of the learning machine. Further, we design a new cost function that is better suitable for the task of information retrieval and for more general ranking problems than the cost functions designed for regression and classification. We also consider other applications of the kernel-based learning algorithms such as text categorization, and pattern recognition in differential display. We develop computationally efficient algorithms for training the considered learning machines with the proposed kernel functions. We also design a fast cross-validation algorithm for regularized least-squares type of learning algorithm. Further, an efficient version of the regularized least-squares algorithm that can be used together with the new cost function for preference learning and ranking tasks is proposed. In summary, we demonstrate that the incorporation of prior knowledge is possible and beneficial, and novel advanced kernels and cost functions can be used in algorithms efficiently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following their detection and seizure by police and border guard authorities, false identity and travel documents are usually scanned, producing digital images. This research investigates the potential of these images to classify false identity documents, highlight links between documents produced by a same modus operandi or same source, and thus support forensic intelligence efforts. Inspired by previous research work about digital images of Ecstasy tablets, a systematic and complete method has been developed to acquire, collect, process and compare images of false identity documents. This first part of the article highlights the critical steps of the method and the development of a prototype that processes regions of interest extracted from images. Acquisition conditions have been fine-tuned in order to optimise reproducibility and comparability of images. Different filters and comparison metrics have been evaluated and the performance of the method has been assessed using two calibration and validation sets of documents, made up of 101 Italian driving licenses and 96 Portuguese passports seized in Switzerland, among which some were known to come from common sources. Results indicate that the use of Hue and Edge filters or their combination to extract profiles from images, and then the comparison of profiles with a Canberra distance-based metric provides the most accurate classification of documents. The method appears also to be quick, efficient and inexpensive. It can be easily operated from remote locations and shared amongst different organisations, which makes it very convenient for future operational applications. The method could serve as a first fast triage method that may help target more resource-intensive profiling methods (based on a visual, physical or chemical examination of documents for instance). Its contribution to forensic intelligence and its application to several sets of false identity documents seized by police and border guards will be developed in a forthcoming article (part II).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: The present study evaluates the reliability of the Radio Memory® software (Radio Memory; Belo Horizonte,Brasil.) on classifying lower third molars, analyzing intra- and interexaminer agreement of the results. Study Design: An observational, descriptive study of 280 lower third molars was made. The corresponding orthopantomographs were analyzed by two examiners using the Radio Memory® software. The exam was repeated 30 days after the first observation by each examiner. Both intra- and interexaminer agreement were determined using the SPSS v 12.0 software package for Windows (SPSS; Chicago, USA). Results: Intra- and interexaminer agreement was shown for both the Pell & Gregory and the Winter classifications, p<0.01, with 99% significant correlation between variables in all the cases. Conclusions: The use of Radio Memory® software for the classification of lower third molars is shown to be a valid alternative to the conventional method (direct evaluation on the orthopantomograph), for both clinical and investigational applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AbstractObjective:To compare the accuracy of computer-aided ultrasound (US) and magnetic resonance imaging (MRI) by means of hepatorenal gradient analysis in the evaluation of nonalcoholic fatty liver disease (NAFLD) in adolescents.Materials and Methods:This prospective, cross-sectional study evaluated 50 adolescents (aged 11–17 years), including 24 obese and 26 eutrophic individuals. All adolescents underwent computer-aided US, MRI, laboratory tests, and anthropometric evaluation. Sensitivity, specificity, positive and negative predictive values and accuracy were evaluated for both imaging methods, with subsequent generation of the receiver operating characteristic (ROC) curve and calculation of the area under the ROC curve to determine the most appropriate cutoff point for the hepatorenal gradient in order to predict the degree of steatosis, utilizing MRI results as the gold-standard.Results:The obese group included 29.2% girls and 70.8% boys, and the eutrophic group, 69.2% girls and 30.8% boys. The prevalence of NAFLD corresponded to 19.2% for the eutrophic group and 83% for the obese group. The ROC curve generated for the hepatorenal gradient with a cutoff point of 13 presented 100% sensitivity and 100% specificity. As the same cutoff point was considered for the eutrophic group, false-positive results were observed in 9.5% of cases (90.5% specificity) and false-negative results in 0% (100% sensitivity).Conclusion:Computer-aided US with hepatorenal gradient calculation is a simple and noninvasive technique for semiquantitative evaluation of hepatic echogenicity and could be useful in the follow-up of adolescents with NAFLD, population screening for this disease as well as for clinical studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A BASIC computer program (REMOVAL) was developed to compute in a VAXNMS environment all the calculations of the removal method for population size estimation (catch-effort method for closed populations with constant sampling effort). The program follows the maximum likelihood methodology,checks the failure conditions, applies the appropriate formula, and displays the estimates of population size and catchability, with their standard deviations and coefficients of variation, and two goodness-of-fit statistics with their significance levels. Data of removal experiments for the cyprinodontid fish Aphanius iberus in the Alt Emporda wetlands are used to exemplify the use of the program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase encoded nano structures such as Quick Response (QR) codes made of metallic nanoparticles are suggested to be used in security and authentication applications. We present a polarimetric optical method able to authenticate random phase encoded QR codes. The system is illuminated using polarized light and the QR code is encoded using a phase-only random mask. Using classification algorithms it is possible to validate the QR code from the examination of the polarimetric signature of the speckle pattern. We used Kolmogorov-Smirnov statistical test and Support Vector Machine algorithms to authenticate the phase encoded QR codes using polarimetric signatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to develop applications for z;isual interpretation of medical images, the early detection and evaluation of microcalcifications in digital mammograms is verg important since their presence is oftenassociated with a high incidence of breast cancers. Accurate classification into benign and malignant groups would help improve diagnostic sensitivity as well as reduce the number of unnecessa y biopsies. The challenge here is the selection of the useful features to distinguish benign from malignant micro calcifications. Our purpose in this work is to analyse a microcalcification evaluation method based on a set of shapebased features extracted from the digitised mammography. The segmentation of the microcalcificationsis performed using a fixed-tolerance region growing method to extract boundaries of calcifications with manually selected seed pixels. Taking into account that shapes and sizes of clustered microcalcificationshave been associated with a high risk of carcinoma based on digerent subjective measures, such as whether or not the calcifications are irregular, linear, vermiform, branched, rounded or ring like, our efforts were addressed to obtain a feature set related to the shape. The identification of the pammeters concerning the malignant character of the microcalcifications was performed on a set of 146 mammograms with their real diagnosis known in advance from biopsies. This allowed identifying the following shape-based parameters as the relevant ones: Number of clusters, Number of holes, Area, Feret elongation, Roughness, and Elongation. Further experiments on a set of 70 new mammogmms showed that the performance of the classification scheme is close to the mean performance of three expert radiologists, which allows to consider the proposed method for assisting the diagnosis and encourages to continue the investigation in the senseof adding new features not only related to the shape

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach to mammographic mass detection is presented in this paper. Although different algorithms have been proposed for such a task, most of them are application dependent. In contrast, our approach makes use of a kindred topic in computer vision adapted to our particular problem. In this sense, we translate the eigenfaces approach for face detection/classification problems to a mass detection. Two different databases were used to show the robustness of the approach. The first one consisted on a set of 160 regions of interest (RoIs) extracted from the MIAS database, being 40 of them with confirmed masses and the rest normal tissue. The second set of RoIs was extracted from the DDSM database, and contained 196 RoIs containing masses and 392 with normal, but suspicious regions. Initial results demonstrate the feasibility of using such approach with performances comparable to other algorithms, with the advantage of being a more general, simple and cost-effective approach

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis deals with distance transforms which are a fundamental issue in image processing and computer vision. In this thesis, two new distance transforms for gray level images are presented. As a new application for distance transforms, they are applied to gray level image compression. The new distance transforms are both new extensions of the well known distance transform algorithm developed by Rosenfeld, Pfaltz and Lay. With some modification their algorithm which calculates a distance transform on binary images with a chosen kernel has been made to calculate a chessboard like distance transform with integer numbers (DTOCS) and a real value distance transform (EDTOCS) on gray level images. Both distance transforms, the DTOCS and EDTOCS, require only two passes over the graylevel image and are extremely simple to implement. Only two image buffers are needed: The original gray level image and the binary image which defines the region(s) of calculation. No other image buffers are needed even if more than one iteration round is performed. For large neighborhoods and complicated images the two pass distance algorithm has to be applied to the image more than once, typically 3 10 times. Different types of kernels can be adopted. It is important to notice that no other existing transform calculates the same kind of distance map as the DTOCS. All the other gray weighted distance function, GRAYMAT etc. algorithms find the minimum path joining two points by the smallest sum of gray levels or weighting the distance values directly by the gray levels in some manner. The DTOCS does not weight them that way. The DTOCS gives a weighted version of the chessboard distance map. The weights are not constant, but gray value differences of the original image. The difference between the DTOCS map and other distance transforms for gray level images is shown. The difference between the DTOCS and EDTOCS is that the EDTOCS calculates these gray level differences in a different way. It propagates local Euclidean distances inside a kernel. Analytical derivations of some results concerning the DTOCS and the EDTOCS are presented. Commonly distance transforms are used for feature extraction in pattern recognition and learning. Their use in image compression is very rare. This thesis introduces a new application area for distance transforms. Three new image compression algorithms based on the DTOCS and one based on the EDTOCS are presented. Control points, i.e. points that are considered fundamental for the reconstruction of the image, are selected from the gray level image using the DTOCS and the EDTOCS. The first group of methods select the maximas of the distance image to new control points and the second group of methods compare the DTOCS distance to binary image chessboard distance. The effect of applying threshold masks of different sizes along the threshold boundaries is studied. The time complexity of the compression algorithms is analyzed both analytically and experimentally. It is shown that the time complexity of the algorithms is independent of the number of control points, i.e. the compression ratio. Also a new morphological image decompression scheme is presented, the 8 kernels' method. Several decompressed images are presented. The best results are obtained using the Delaunay triangulation. The obtained image quality equals that of the DCT images with a 4 x 4

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tässä diplomityössä optimoitiin nelivaiheinen 1 MWe höyryturbiinin prototyyppimalli evoluutioalgoritmien avulla sekä tutkittiin optimoinnista saatuja kustannushyötyjä. Optimoinnissa käytettiin DE – algoritmia. Optimointi saatiin toimimaan, mutta optimoinnissa käytetyn laskentasovelluksen (semiempiirisiin yhtälöihin perustuvat mallit) luonteesta johtuen optimoinnin tarkkuus CFD – laskennalla suoritettuun tarkastusmallinnukseen verrattuna oli jonkin verran toivottua pienempi. Tulosten em. epätarkkuus olisi tuskin ollut vältettävissä, sillä ongelma johtui puoliempiirisiin laskentamalleihin liittyvistä lähtöoletusongelmista sekä epävarmuudesta sovitteiden absoluuttisista pätevyysalueista. Optimoinnin onnistumisen kannalta tällainen algebrallinen mallinnus oli kuitenkin välttämätöntä, koska esim. CFD-laskentaa ei olisi mitenkään voitu tehdä jokaisella optimointiaskeleella. Optimoinnin aikana ongelmia esiintyi silti konetehojen riittävyydessä sekä sellaisen sopivan rankaisumallin löytämisessä, joka pitäisi algoritmin matemaattisesti sallitulla alueella, muttei rajoittaisi liikaa optimoinnin edistymistä. Loput ongelmat johtuivat sovelluksen uutuudesta sekä täsmällisyysongelmista sovitteiden pätevyysalueiden käsittelyssä. Vaikka optimoinnista saatujen tulosten tarkkuus ei ollut aivan tavoitteen mukainen, oli niillä kuitenkin koneensuunnittelua edullisesti ohjaava vaikutus. DE – algoritmin avulla suoritetulla optimoinnilla saatiin turbiinista noin 2,2 % enemmän tehoja, joka tarkoittaa noin 15 000 € konekohtaista kustannushyötyä. Tämä on yritykselle erittäin merkittävä konekohtainen kustannushyöty. Loppujen lopuksi voitaneen sanoa, etteivät evoluutioalgoritmit olleet parhaimmillaan prototyyppituotteen optimoinnissa. Evoluutioalgoritmeilla teknisten laitteiden optimoinnissa piilee valtavasti mahdollisuuksia, mutta se vaatii kypsän sovelluskohteen, joka tunnetaan jo entuudestaan erinomaisesti tai on yksinkertainen ja aukottomasti laskettavissa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the literature on housing market areas, different approaches can be found to defining them, for example, using travel-to-work areas and, more recently, making use of migration data. Here we propose a simple exercise to shed light on which approach performs better. Using regional data from Catalonia, Spain, we have computed housing market areas with both commuting data and migration data. In order to decide which procedure shows superior performance, we have looked at uniformity of prices within areas. The main finding is that commuting algorithms present more homogeneous areas in terms of housing prices.