917 resultados para Computational lambda-calculus
Resumo:
The paper presents a computational analysis of Bulgarian dialect variation, concentrating on pronunciation differences. It describes the phonetic data set compiled during the project* ‘Measuring Linguistic Unity and Diversity in Europe’ that consists of the pronunciations of 157 words collected at 197 sites from all over Bulgaria. We also present the results of analyzing this data set using various quantitative methods and compare them to the traditional scholarship on Bulgarian dialects. The results have shown that various dialectometrical techniques clearly identify east-west division of the country along the ‘jat’ border, as well as the third group of varieties in the Rodopi area. The rest of the groups specified in the traditional atlases either were not confirmed or were confirmed with a low confidence.
Resumo:
We propose a new approach to the mathematical modelling of microbial growth. Our approach differs from familiar Monod type models by considering two phases in the physiological states of the microorganisms and makes use of basic relations from enzyme kinetics. Such an approach may be useful in the modelling and control of biotechnological processes, where microorganisms are used for various biodegradation purposes and are often put under extreme inhibitory conditions. Some computational experiments are performed in support of our modelling approach.
Resumo:
Dedicated to Professor A.M. Mathai on the occasion of his 75-th birthday. Mathematics Subject Classi¯cation 2010: 26A33, 44A10, 33C60, 35J10.
Resumo:
MSC 2010: 44A20, 33C60, 44A10, 26A33, 33C20, 85A99
Resumo:
MSC 2010: 26A33, 05C72, 33E12, 34A08, 34K37, 35R11, 60G22
Resumo:
MSC 2010: 26A33, 05C72, 33E12, 34A08, 34K37, 35R11, 60G22
Resumo:
MSC 2010: 26A33 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversary
Resumo:
MSC 2010: 15A15, 15A52, 33C60, 33E12, 44A20, 62E15 Dedicated to Professor R. Gorenflo on the occasion of his 80th birthday
Resumo:
Existing approaches of social influence analysis usually focus on how to develop effective algorithms to quantize users' influence scores. They rarely consider a person's expertise levels which are arguably important to influence measures. In this paper, we propose a computational approach to measuring the correlation between expertise and social media influence, and we take a new perspective to understand social media influence by incorporating expertise into influence analysis. We carefully constructed a large dataset of 13,684 Chinese celebrities from Sina Weibo (literally 'Sina microblogging'). We found that there is a strong correlation between expertise levels and social media influence scores. In addition, different expertise levels showed influence variation patterns: high-expertise celebrities have stronger influence on the 'audience' in their expertise domains.
Resumo:
Виржиния С. Кирякова - В този обзор илюстрираме накратко наши приноси към обобщенията на дробното смятане (анализ) като теория на операторите за интегриране и диференциране от произволен (дробен) ред, на класическите специални функции и на интегралните трансформации от лапласов тип. Показано е, че тези три области на анализа са тясно свързани и взаимно индуцират своето възникване и по-нататъшно развитие. За конкретните твърдения, доказателства и примери, вж. Литературата.
Resumo:
Social media influence analysis, sometimes also called authority detection, aims to rank users based on their influence scores in social media. Existing approaches of social influence analysis usually focus on how to develop effective algorithms to quantize users’ influence scores. They rarely consider a person’s expertise levels which are arguably important to influence measures. In this paper, we propose a computational approach to measuring the correlation between expertise and social media influence, and we take a new perspective to understand social media influence by incorporating expertise into influence analysis. We carefully constructed a large dataset of 13,684 Chinese celebrities from Sina Weibo (literally ”Sina microblogging”). We found that there is a strong correlation between expertise levels and social media influence scores. Our analysis gave a good explanation of the phenomenon of “top across-domain influencers”. In addition, different expertise levels showed influence variation patterns: e.g., (1) high-expertise celebrities have stronger influence on the “audience” in their expertise domains; (2) expertise seems to be more important than relevance and participation for social media influence; (3) the audiences of top expertise celebrities are more likely to forward tweets on topics outside the expertise domains from high-expertise celebrities.
Resumo:
In dimensional metrology, often the largest source of uncertainty of measurement is thermal variation. Dimensional measurements are currently scaled linearly, using ambient temperature measurements and coefficients of thermal expansion, to ideal metrology conditions at 20˚C. This scaling is particularly difficult to implement with confidence in large volumes as the temperature is unlikely to be uniform, resulting in thermal gradients. A number of well-established computational methods are used in the design phase of product development for the prediction of thermal and gravitational effects, which could be used to a greater extent in metrology. This paper outlines the theory of how physical measurements of dimension and temperature can be combined more comprehensively throughout the product lifecycle, from design through to the manufacturing phase. The Hybrid Metrology concept is also introduced: an approach to metrology, which promises to improve product and equipment integrity in future manufacturing environments. The Hybrid Metrology System combines various state of the art physical dimensional and temperature measurement techniques with established computational methods to better predict thermal and gravitational effects.
Resumo:
Secondary pyrolysis in fluidized bed fast pyrolysis of biomass is the focus of this work. A novel computational fluid dynamics (CFD) model coupled with a comprehensive chemistry scheme (134 species and 4169 reactions, in CHEMKIN format) has been developed to investigate this complex phenomenon. Previous results from a transient three-dimensional model of primary pyrolysis were used for the source terms of primary products in this model. A parametric study of reaction atmospheres (H2O, N2, H2, CO2, CO) has been performed. For the N2 and H2O atmosphere, results of the model compared favorably to experimentally obtained yields after the temperature was adjusted to a value higher than that used in experiments. One notable deviation versus experiments is pyrolytic water yield and yield of higher hydrocarbons. The model suggests a not overly strong impact of the reaction atmosphere. However, both chemical and physical effects were observed. Most notably, effects could be seen on the yield of various compounds, temperature profile throughout the reactor system, residence time, radical concentration, and turbulent intensity. At the investigated temperature (873 K), turbulent intensity appeared to have the strongest influence on liquid yield. With the aid of acceleration techniques, most importantly dimension reduction, chemistry agglomeration, and in-situ tabulation, a converged solution could be obtained within a reasonable time (∼30 h). As such, a new potentially useful method has been suggested for numerical analysis of fast pyrolysis.
Resumo:
2010 Mathematics Subject Classification: 60J80.
Resumo:
MSC 2010: 49K05, 26A33