950 resultados para Computational fluid dynamics modeling
Resumo:
Interactions of wakes in a flow past a row of square bars, which is placed across a uniform flow, are investigated by numerical simulations and experiments on the tassumption that the flow is two-dimensional and incompressible. At small Reynolds numbers the flow is steady and symmetric with respect not only to streamwise lines through the center of each square bar but also to streamwise centerlines between adjacent square bars. However, the steady symmetric flow becomes unstable at larger Reynolds numbers and make a transition to a steady asymmetric flow with respect to the centerlines between adjacent square bars in some cases or to an oscillatory flow in other cases. It is found that vortices are shed synchronously from adjacent square bars in the same phase or in anti-phase depending upon the distance between the bars when the flow is oscillatory. The origin of the transition to the steady asymmetric flow is identified as a pitchfork bifurcation, while the oscillatory flows with synchronous shedding of vortices are clarified to originate from a Hopf bifurcation. The critical Reynolds numbers of the transitions are evaluated numerically and the bifurcation diagram of the flow is obtained.
Resumo:
Summarizing the accumulated experience for a long time in the polyparametric cognitive modeling of different physiological processes (electrocardiogram, electroencephalogram, electroreovasogram and others) and the development on this basis some diagnostics methods give ground for formulating a new methodology of the system analysis in biology. The gist of the methodology consists of parametrization of fractals of electrophysiological processes, matrix description of functional state of an object with a unified set of parameters, construction of the polyparametric cognitive geometric model with artificial intelligence algorithms. The geometry model enables to display the parameter relationships are adequate to requirements of the system approach. The objective character of the elements of the models and high degree of formalization which facilitate the use of the mathematical methods are advantages of these models. At the same time the geometric images are easily interpreted in physiological and clinical terms. The polyparametric modeling is an object oriented tool possessed advances functional facilities and some principal features.
Resumo:
Предложена структурная модель полутонового изображения. Структурная модель предполагает инвариантное относительно аффинных преобразований описание выделенных в изображении объектов. Форма объекта полностью определяет его описание и представлена его граничным контуром и функцией оптической плотности, которая определена в пределах этого контура. Предложено определение контура полутонового изображения как последовательности, состоящей из отрезков прямых и дуг кривых, причем эти отрезки прямых и дуги кривых являются особыми линиями поверхности, которая соответствует полутоновому изображению. Рассматривается пример использования структурной модели в процессе обработки полутоновых изображений медицинских препаратов, полученных по методу Кирлиан.
Resumo:
Добри Данков, Владимир Русинов, Мария Велинова, Жасмина Петрова - Изследвана е химическа реакция чрез два начина за моделиране на вероятността за химическа реакция използвайки Direct Simulation Monte Carlo метод. Изследван е порядъка на разликите при температурите и концентрациите чрез тези начини. Когато активността на химическата реакция намалява, намаляват и разликите между концентрациите и температурите получени по двата начина. Ключови думи: Механика на флуидите, Кинетична теория, Разреден газ, DSMC
Resumo:
Петър Господинов, Добри Данков, Владимир Русинов, Стефан Стефанов - Иследвано е цилиндрично течение на Кует на разреден газ в случая на въртене на два коаксиални цилиндъра с еднакви по големина скорости, но в различни посоки. Целта на изследването е да се установи влиянието на малки скорости на въртене върху макрохарактеристиките – ρ, V , . Числените резултати са получени чрез използване на DSMC и числено решение на уравненията на Навие-Стокс за относително малки (дозвукови) скорости на въртене. Установено е добро съвпадение на резултатите получени по двата метода за Kn = 0.02. Установено е, че съществува “стационарна” точка за плътността и скоростта. Получените резултати са важни при решаването на неравнини, задачи от микрофлуидиката с отчитане на ефектите на кривината. Ключови думи: Механика на флуидите, Кинетична теория, Разреден газ, DSMC
Resumo:
Петър Господинов, Добри Данков, Владимир Русинов, Стефан Стефанов - Изследвано е стационарно течение на Кует на разреден газ в случая на въртене на вътрешния цилиндър и неподвижен външен цилиндър чрез използване на DSMC метод и числено решение на уравненията на Навие–Стокс за относително малка (дозвукова) скорост на въртене. Изследвани са различни случаи при промяна на температурата на въртящият се цилиндър и числото на Кнудсен. Целта на изследването е да се установи влиянието на малки скорости на въртене върху макрохарактеристиките – плътността, скоростта и температурата на газа. Установено е добро съвпадение на резултатите получени по двата метода за Kn = 0.02. Получените резултати са важни при решаването на неравнинни, задачи от микрофлуидиката с отчитане на ефектите на кривината. Ключови думи: механика на флуидите, кинетична теория, разреден газ, DSMC.
Resumo:
This dissertation delivers a framework to diagnose the Bull-Whip Effect (BWE) in supply chains and then identify methods to minimize it. Such a framework is needed because in spite of the significant amount of literature discussing the bull-whip effect, many companies continue to experience the wide variations in demand that are indicative of the bull-whip effect. While the theory and knowledge of the bull-whip effect is well established, there still is the lack of an engineering framework and method to systematically identify the problem, diagnose its causes, and identify remedies. ^ The present work seeks to fill this gap by providing a holistic, systems perspective to bull-whip identification and diagnosis. The framework employs the SCOR reference model to examine the supply chain processes with a baseline measure of demand amplification. Then, research of the supply chain structural and behavioral features is conducted by means of the system dynamics modeling method. ^ The contribution of the diagnostic framework, is called Demand Amplification Protocol (DAMP), relies not only on the improvement of existent methods but also contributes with original developments introduced to accomplish successful diagnosis. DAMP contributes a comprehensive methodology that captures the dynamic complexities of supply chain processes. The method also contributes a BWE measurement method that is suitable for actual supply chains because of its low data requirements, and introduces a BWE scorecard for relating established causes to a central BWE metric. In addition, the dissertation makes a methodological contribution to the analysis of system dynamic models with a technique for statistical screening called SS-Opt, which determines the inputs with the greatest impact on the bull-whip effect by means of perturbation analysis and subsequent multivariate optimization. The dissertation describes the implementation of the DAMP framework in an actual case study that exposes the approach, analysis, results and conclusions. The case study suggests a balanced solution between costs and demand amplification can better serve both firms and supply chain interests. Insights pinpoint to supplier network redesign, postponement in manufacturing operations and collaborative forecasting agreements with main distributors.^
Resumo:
Mechanical conditioning has been shown to promote tissue formation in a wide variety of tissue engineering efforts. However the underlying mechanisms by which external mechanical stimuli regulate cells and tissues are not known. This is particularly relevant in the area of heart valve tissue engineering (HVTE) owing to the intense hemodynamic environments that surround native valves. Some studies suggest that oscillatory shear stress (OSS) caused by steady flow and scaffold flexure play a critical role in engineered tissue formation derived from bone marrow derived stem cells (BMSCs). In addition, scaffold flexure may enhance nutrient (e.g. oxygen, glucose) transport. In this study, we computationally quantified the i) magnitude of fluid-induced shear stresses; ii) the extent of temporal fluid oscillations in the flow field using the oscillatory shear index (OSI) parameter, and iii) glucose and oxygen mass transport profiles. Noting that sample cyclic flexure induces a high degree of oscillatory shear stress (OSS), we incorporated moving boundary computational fluid dynamic simulations of samples housed within a bioreactor to consider the effects of: 1) no flow, no flexure (control group), 2) steady flow-alone, 3) cyclic flexure-alone and 4) combined steady flow and cyclic flexure environments. We also coupled a diffusion and convention mass transport equation to the simulated system. We found that the coexistence of both OSS and appreciable shear stress magnitudes, described by the newly introduced parameter OSI-t , explained the high levels of engineered collagen previously observed from combining cyclic flexure and steady flow states. On the other hand, each of these metrics on its own showed no association. This finding suggests that cyclic flexure and steady flow synergistically promote engineered heart valve tissue production via OSS, so long as the oscillations are accompanied by a critical magnitude of shear stress. In addition, our simulations showed that mass transport of glucose and oxygen is enhanced by sample movement at low sample porosities, but did not play a role in highly porous scaffolds. Preliminary in-house in vitro experiments showed that cell proliferation and phenotype is enhanced in OSI-t environments.
Resumo:
The aim of this work is to present a methodology to develop cost-effective thermal management solutions for microelectronic devices, capable of removing maximum amount of heat and delivering maximally uniform temperature distributions. The topological and geometrical characteristics of multiple-story three-dimensional branching networks of microchannels were developed using multi-objective optimization. A conjugate heat transfer analysis software package and an automatic 3D microchannel network generator were developed and coupled with a modified version of a particle-swarm optimization algorithm with a goal of creating a design tool for 3D networks of optimized coolant flow passages. Numerical algorithms in the conjugate heat transfer solution package include a quasi-ID thermo-fluid solver and a steady heat diffusion solver, which were validated against results from high-fidelity Navier-Stokes equations solver and analytical solutions for basic fluid dynamics test cases. Pareto-optimal solutions demonstrate that thermal loads of up to 500 W/cm2 can be managed with 3D microchannel networks, with pumping power requirements up to 50% lower with respect to currently used high-performance cooling technologies.
Resumo:
In this work we have investigated some aspects of the two-dimensional flow of a viscous Newtonian fluid through a disordered porous medium modeled by a random fractal system similar to the Sierpinski carpet. This fractal is formed by obstacles of various sizes, whose distribution function follows a power law. They are randomly disposed in a rectangular channel. The velocity field and other details of fluid dynamics are obtained by solving numerically of the Navier-Stokes and continuity equations at the pore level, where occurs actually the flow of fluids in porous media. The results of numerical simulations allowed us to analyze the distribution of shear stresses developed in the solid-fluid interfaces, and find algebraic relations between the viscous forces or of friction with the geometric parameters of the model, including its fractal dimension. Based on the numerical results, we proposed scaling relations involving the relevant parameters of the phenomenon, allowing quantifying the fractions of these forces with respect to size classes of obstacles. Finally, it was also possible to make inferences about the fluctuations in the form of the distribution of viscous stresses developed on the surface of obstacles.
Resumo:
Twelve submarine mud volcanoes (MV) in the Kumano forearc basin within the Nankai Trough subduction zone were investigated for hydrocarbon origins and fluid dynamics. Gas hydrates diagnostic for methane concentrations exceeding solubilities were recovered from MVs 2, 4, 5, and 10. Molecular ratios (C1/C2<250) and stable carbon isotopic compositions (d13C-CH4 >-40 per mil V-PDB) indicate that hydrate-bound hydrocarbons (HCs) at MVs 2, 4, and 10 are derived from thermal cracking of organic matter. Considering thermal gradients at the nearby IODP Sites C0009 and C0002, the likely formation depth of such HCs ranges between 2300 and 4300 m below seafloor (mbsf). With respect to basin sediment thickness and the minimum distance to the top of the plate boundary thrust we propose that the majority of HCs fueling the MVs is derived from sediments of the Cretaceous to Tertiary Shimanto belt below Pliocene/Pleistocene to recent basin sediments. Considering their sizes and appearances hydrates are suggested to be relicts of higher MV activity in the past, although the sporadic presence of vesicomyid clams at MV 2 showed that fluid migration is sufficient to nourish chemosynthesis-based organisms in places. Distributions of dissolved methane at MVs 3, 4, 5, and 8 pointed at fluid supply through one or few MV conduits and effective methane oxidation in the immediate subsurface. The aged nature of the hydrates suggests that the major portion of methane immediately below the top of the methane-containing sediment interval is fueled by current hydrate dissolution rather than active migration from greater depth.
Resumo:
This study examined the effect of a spanwise angle of attack gradient on the growth and stability of a dynamic stall vortex in a rotating system. It was found that a spanwise angle of attack gradient induces a corresponding spanwise vorticity gradient, which, in combination with spanwise flow, results in a redistribution of circulation along the blade. Specifically, when modelling the angle of attack gradient experienced by a wind turbine at the 30% span position during a gust event, the spanwise vorticity gradient was aligned such that circulation was transported from areas of high circulation to areas of low circulation, increasing the local dynamic stall vortex growth rate, which corresponds to an increase in the lift coefficient, and a decrease in the local vortex stability at this point. Reversing the relative alignment of the spanwise vorticity gradient and spanwise flow results in circulation transport from areas of low circulation generation to areas of high circulation generation, acting to reduce local circulation and stabilise the vortex. This circulation redistribution behaviour describes a mechanism by which the fluctuating loads on a wind turbine are magnified, which is detrimental to turbine lifetime and performance. Therefore, an understanding of this phenomenon has the potential to facilitate optimised wind turbine design.
Resumo:
The European CloudSME project that incorporated 24 European SMEs, besides five academic partners, has finished its funded phase in March 2016. This presentation will provide a summary of the results of the project, and will analyze the challenges and differences when developing “SME Gateways”, when compared to “Science Gateways”. CloudSME started in 2013 with the aim to develop a cloud-based simulation platform for manufacturing and engineering SMEs. The project was based around industry use-cases, five of which were incorporated in the project from the start, and seven additional ones that were added as an outcome of an open call in January 2015. CloudSME utilized science gateway related technologies, such as the commercial CloudBroker Platform and the WS-PGRADE/gUSE Gateway Framework that were developed in the preceding SCI-BUS project. As most important outcome, the project successfully implemented 12 industry quality demonstrators that showcase how SMEs in the manufacturing and engineering sector can utilize cloud-based simulation services. Some of these solutions are already market-ready and currently being rolled out by the software vendor companies. Some others require further fine-tuning and the implementation of commercial interfaces before being put into the market. The CloudSME use-cases came from a very wide application spectrum. The project implemented, for example, an open marketplace for micro-breweries to optimize their production and distribution processes, an insole design validation service to be used by podiatrists and shoe manufacturers, a generic stock management solution for manufacturing SMEs, and also several “classical” high-performance computing case-studies, such as fluid dynamics simulations for model helicopter design, and dual-fuel internal combustion engine simulation. As the project generated significant impact and interest in the manufacturing sector, 10 CloudSME stakeholders established a follow-up company called CloudSME UG for the future commercialization of the results. Besides the success stories, this talk would also like to highlight the difficulties when transferring the outcomes of an academic research project to real commercial applications. The different mindset and approach of academic and industry partners presented a real challenge for the CloudSME project, with some interesting and valuable lessons learnt. The academic way of supporting SMEs did not always work well with the rather different working practices and culture of many participants. Also, the quality of support regarding operational solutions required by the SMEs is well beyond the typical support services academic institutions are prepared for. Finally, a clear lack of trust in academic solutions when compared to commercial solutions was also imminent. The talk will highlight some of these challenges underpinned by the implementation of the CloudSME use-cases.
Resumo:
The present document deals with the optimization of shape of aerodynamic profiles -- The objective is to reduce the drag coefficient on a given profile without penalising the lift coefficient -- A set of control points defining the geometry are passed and parameterized as a B-Spline curve -- These points are modified automatically by means of CFD analysis -- A given shape is defined by an user and a valid volumetric CFD domain is constructed from this planar data and a set of user-defined parameters -- The construction process involves the usage of 2D and 3D meshing algorithms that were coupled into own- code -- The volume of air surrounding the airfoil and mesh quality are also parametrically defined -- Some standard NACA profiles were used by obtaining first its control points in order to test the algorithm -- Navier-Stokes equations were solved for turbulent, steady-state ow of compressible uids using the k-epsilon model and SIMPLE algorithm -- In order to obtain data for the optimization process an utility to extract drag and lift data from the CFD simulation was added -- After a simulation is run drag and lift data are passed to the optimization process -- A gradient-based method using the steepest descent was implemented in order to define the magnitude and direction of the displacement of each control point -- The control points and other parameters defined as the design variables are iteratively modified in order to achieve an optimum -- Preliminary results on conceptual examples show a decrease in drag and a change in geometry that obeys to aerodynamic behavior principles