985 resultados para Circulant Matrices
Resumo:
Multiresidue methods for pesticides monitoring by GC are commonly employed, however, it is well known that the presence of compounds of the matrix introduces errors during the quantiûcation. The main consequence of matrix effect is an increasing or decreasing analyte signal after the GC saturation with extracts of matrix. In this paper, the influence of constituents of nine matrices on the quantification of the four pesticides by GC-ECD was studied. Variation of signal was evaluated by PCA and HCA, and results showed that the constituents of tomato increased the signal (until 300%), while extracts of apple decreased (until -20%). Variation the analyte signal in the presence of the matrix in respect to the same analyte in solvent (standard solution) also was observed, mainly for liver extract (until 270%).
Resumo:
The restricted availability of water sources suitable for consumption and high costs for obtaining potable water has caused an increase of the conscience concerning the use. Thus, there is a high demand for "environmentally safe methods" which are according to the principles of Green Chemistry. Moreover, these methods should be able to provide reliable results for the analysis of water quality for various pollutants, such as phenol. In this work, greener alternatives for sample preparation for phenol determination in aqueous matrices are presented, which include: liquid phase microextraction, solid phase microextraction, flow analysis, cloud point extraction and aqueous two-phase systems.
Resumo:
In this paper, we describe the preparation of alginate nanoparticles as a delivery system for the herbicide clomazone. Two different methods were investigated and characterized by size distribution, zeta potencial, pH and in vitro release. The alginate/AOT nanoparticles had higher rates of association of the herbicide clomazone than alginate/chitosan nanoparticles. Clomazone release profile, showed a significant difference in release behavior of pure herbicide in solution when compared with herbicide loaded in both alginate nanoparticles. This study is important to construct a biodegradable release system using herbicide for later release into more specific targets, avoiding contamination of environmental matrices.
Resumo:
Emerging organic pollutants (EOP) include many environmental contaminants based on commercial products such as pharmaceuticals, personal care products, detergents, gasoline, polymers, etc. EOP may be candidates for future regulation as they offer potential risk to environmental and human health due to their continual entrance into the environment and to the fact that even the most modern wastewater treatment plants are not able to totally transform / remove these compounds. High performance liquid chromatography is recommended to separate emerging organic pollutants with characteristics of high polarity and low volatility, especially pharmaceuticals, from environmental matrices.
Resumo:
In the recent years, analytical toxicologists have been facing difficulties in detecting designer drugs due to the chemical modifications on the existing structures and the speed in which they are released into the market, requiring the development and improvement of specific and appropriate analytical methods. This work is a review of the literature which summarizes the characteristics of the drugs and the analytical validated methods using conventional and unconventional matrices currently used for correct identification and quantification of the following classes of emerging drugs of abuse: derivatives of opiates, amphetamines, tryptamines, piperazines and cannabinoids.
Resumo:
This paper presents a practical and rapid method which was validated for simultaneous quantification and confirmation of 29 pesticides in fruits and vegetables using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The samples were extracted following the method known as QuEChERS. Using the developed chromatographic conditions, the pesticides can be separated in less than 9 min. Two multiple reaction monitoring (MRM) assays were used for each pesticide. Four representative matrices (lettuce, tomato, apple and grapes) were selected to investigate the effect in recoveries and precision. Typical recoveries ranged from 70-120%, with relative standard deviation (RSDs) lower than 20%.
Resumo:
Components in complex matrices can cause variations in chromatographic response during analysis of pesticides by gas chromatography. These variations are related to the competition between analytes and matrix components for adsorption sites in the chromatographic system. The capacity of the pesticides chlorpyrifos and deltamethrin to be adsorbed in the injector and chromatographic column was evaluated by constructing three isotherms and changing the column heating rate to 10 and 30 ºC min-1. By using ANCOVA to compare the slope of calibration graphs, results showed that the higher the injector temperature (310 ºC) the lower the pesticide adsorption. Also, deltamethrin influenced the adsorption of chlorpyrifos on the column chromatographic.
Resumo:
In this work, the materials used in the recovery of estrogens from aqueous matrices by filtration and solid phase extraction were evaluated. The results showed that glass-fiber filters allow a recovery and repeatability compatible with this type of analysis, whereas cellulose esters lead to significant losses of the analytes, mainly due to adsorption processes. On the other hand, the transferring of the sample to the extraction cartridges should be carried out with glass or Teflon tubing, since the adsorption observed with other polymeric materials (eg. silicone, Tygon, polyethylene and PVC) dramatically reduces the recovery and repeatability of the extraction process.
Resumo:
Acetylation was performed to reduce the polarity of wood and increase its compatibility with polymer matrices for the production of composites. These reactions were performed first as a function of acetic acid and anhydride concentration in a mixture catalyzed by sulfuric acid. A concentration of 50%/50% (v/v) of acetic acid and anhydride was found to produced the highest conversion rate between the functional groups. After these reactions, the kinetics were investigated by varying times and temperatures using a 3² factorial design, and showed time was the most relevant parameter in determining the conversion of hydroxyl into carbonyl groups.
Resumo:
The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as "quebra-pedras" in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, ¹H HR-MAS NMR and ¹H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques.
Resumo:
This paper reports the development and validation of a new analytical method using UV spectrophotometry to quantify carvedilol (CRV) in hydrophilic matrices and raw material. This method was shown to be linear, accurate, precise, robust and to have adequate limits of quantification and detection (LQ and LD, respectively), allowing its use in the dissolution test of hydrophilic matrices. The content of CRV determined through this method was compared with two previously validated methods based on the reference techniques of High Performance Liquid Chromatography (HPLC) and Potentiometric Titrations (PT). ANOVA confirmed the equivalence of these methods, showing no significant differences.
Resumo:
To choose among the variety of oleaginous plants for biodiesel production, the oil content of several matrices was determined through different low-field ¹H nuclear magnetic resonance (NMR) experiments with varied pulse sequences, namely single-pulse, spin-echo, CPMG, and CWFP. The experiments that involved the first three sequences showed high correlation with each other and with the solvent extraction method. The quality of the vegetable oils was also evaluated on the basis of the existing correlation between the T2 values of the oils and their properties, such as viscosity, iodine index, and cetane index. These analyses were performed using HCA and PCA chemometric tools. The results were sufficiently significant to allow separation of the oleaginous matrices according to their quality. Thus, the low-field ¹H NMR technique was confirmed as an important tool to aid in the selection of oleaginous matrices for biodiesel production.
Resumo:
Extraction/concentration is a crucial step for the analysis of organic compounds at trace level concentrations and dispersed in complex matrices. Solid-phase extraction (SPE) is one of the techniques used for this purpose. In this work, a low cost apparatus for SPE was developed that uses nitrogen under positive pressure and ensures the maintenance of the sample flow, while also allows the simultaneous extraction of different samples without cross-contamination and sample contact with plastic materials. For the system set up, easily accessible materials were used such as hypodermic needles, stainless steel tubes, rubber stoppers, and 3-way valves from serum delivery apparatus.
Resumo:
This study aimed to produce and characterize a novel material from fish scales and chitosan for use as a medium for the extended release of herbicides. The mechanism of release for the herbicides atrazine and diuron was influenced by diffusion and swelling according to the power law kinetic model. The atrazine release time was seven days, while that of diuron was four days. The results of this study will contribute to the development of environmental matrices for herbicide release systems.
Resumo:
This review reports the preparation and characterization of bionanocomposites based on biodegradable polymers reinforced with cellulose nanocrystals (CNC) described in the literature. The outstanding potential of cellulose nanocrystals as reinforcement fillers of biodegradable polymers is presented with an emphasis on the solution casting process, which is an appropriate method to investigate the physico-chemical effects of the incorporation of CNC into the polymeric matrices. Besides solution casting, other small scale methods such as electrospinning and layer-by-layer are also covered.