995 resultados para CONTINUOUS-SPECTRUM
Resumo:
Evidence for scattering closed orbits for the Rydberg electron of the singly excited helium atom in crossed electric and magnetic fields at constant scaled energy and constant scaled electric field strength has been found through a quantum calculation of the photo-excitation spectrum. A particular 3D scattering orbit in a mixed regular and chaotic region has been investigated and the hydrogenic 3D closed orbits composing it identified. To the best of our knowledge, this letter reports the first quantum calculation of the scaled spectrum of a non- hydrogenic atom in crossed fields.
Resumo:
The scaled photoexcitation spectrum of the hydrogen atom in crossed electric and magnetic fields has been obtained by means of accurate quantum mechanical calculation using a new algorithm. Closed orbits in the corresponding classical system have also been obtained, using a new, efficient and practical searching procedure. Two new classes of closed orbit have been identified. Fourier transforming each photoexcitation quantum spectrum to yield a plot against scaled action has allowed direct comparison between peaks in such plots and the scaled action values of closed orbits, Excellent agreement has been found with all peaks assigned.
Resumo:
In a recent Letter to the Editor (J Rao, D Delande and K T Taylor 2001 J. Phys. B: At. Mol. Opt. Phys. 34 L391-9) we made a brief first report of our quantal and classical calculations for the hydrogen atom in crossed electric and magnetic fields at constant scaled energy and constant scaled electric field strength. A principal point of that communication was our statement that each and every peak in the Fourier transform of the scaled quantum photo-excitation spectrum for scaled energy value epsilon = -0.586 538 871028 43 and scaled electric value (f) over tilde = 0.068 537 846 207 618 71 could be identified with a scaled action value of a found and mapped-out closed orbit up to a scaled action of 20. In this follow-up paper, besides presenting full details of our quantum and classical methods, we set out the scaled action values of all 317 closed orbits involved, together with the geometries of many.
Resumo:
Electron energy distributions of singly and doubly ionized helium in an intense 390 nm laser field have been measured at two intensities (0.8 PW/cm(2) and 1.1 PW/cm(2), where PW equivalent to 10(15) W/cm(2)). Numerical solutions of the full-dimensional time-dependent helium Schrodinger equation show excellent agreement with the experimental measurements. The high-energy portion of the two-electron energy distributions reveals an unexpected 5U(p) cutoff for the double ionization (DI) process and leads to a proposed model for DI below the quasiclassical threshold.
Resumo:
It is shown how the fractional probability density diffusion equation for the diffusion limit of one-dimensional continuous time random walks may be derived from a generalized Markovian Chapman-Kolmogorov equation. The non-Markovian behaviour is incorporated into the Markovian Chapman-Kolmogorov equation by postulating a Levy like distribution of waiting times as a kernel. The Chapman-Kolmogorov equation so generalised then takes on the form of a convolution integral. The dependence on the initial conditions typical of a non-Markovian process is treated by adding a time dependent term involving the survival probability to the convolution integral. In the diffusion limit these two assumptions about the past history of the process are sufficient to reproduce anomalous diffusion and relaxation behaviour of the Cole-Cole type. The Green function in the diffusion limit is calculated using the fact that the characteristic function is the Mittag-Leffler function. Fourier inversion of the characteristic function yields the Green function in terms of a Wright function. The moments of the distribution function are evaluated from the Mittag-Leffler function using the properties of characteristic functions and a relation between the powers of the second moment and higher order even moments is derived. (C) 2004 Elsevier B.V. All rights reserved.