11 resultados para CONTINUOUS-SPECTRUM
em CaltechTHESIS
Resumo:
This thesis presents a technique for obtaining the stochastic response of a nonlinear continuous system. First, the general method of nonstationary continuous equivalent linearization is developed. This technique allows replacement of the original nonlinear system with a time-varying linear continuous system. Next, a numerical implementation is described which allows solution of complex problems on a digital computer. In this procedure, the linear replacement system is discretized by the finite element method. Application of this method to systems satisfying the one-dimensional wave equation with two different types of constitutive nonlinearities is described. Results are discussed for nonlinear stress-strain laws of both hardening and softening types.
Resumo:
The first thesis topic is a perturbation method for resonantly coupled nonlinear oscillators. By successive near-identity transformations of the original equations, one obtains new equations with simple structure that describe the long time evolution of the motion. This technique is related to two-timing in that secular terms are suppressed in the transformation equations. The method has some important advantages. Appropriate time scalings are generated naturally by the method, and don't need to be guessed as in two-timing. Furthermore, by continuing the procedure to higher order, one extends (formally) the time scale of valid approximation. Examples illustrate these claims. Using this method, we investigate resonance in conservative, non-conservative and time dependent problems. Each example is chosen to highlight a certain aspect of the method.
The second thesis topic concerns the coupling of nonlinear chemical oscillators. The first problem is the propagation of chemical waves of an oscillating reaction in a diffusive medium. Using two-timing, we derive a nonlinear equation that determines how spatial variations in the phase of the oscillations evolves in time. This result is the key to understanding the propagation of chemical waves. In particular, we use it to account for certain experimental observations on the Belusov-Zhabotinskii reaction.
Next, we analyse the interaction between a pair of coupled chemical oscillators. This time, we derive an equation for the phase shift, which measures how much the oscillators are out of phase. This result is the key to understanding M. Marek's and I. Stuchl's results on coupled reactor systems. In particular, our model accounts for synchronization and its bifurcation into rhythm splitting.
Finally, we analyse large systems of coupled chemical oscillators. Using a continuum approximation, we demonstrate mechanisms that cause auto-synchronization in such systems.
Resumo:
Cells in the lateral intraparietal cortex (LIP) of rhesus macaques respond vigorously and in spatially-tuned fashion to briefly memorized visual stimuli. Responses to stimulus presentation, memory maintenance, and task completion are seen, in varying combination from neuron to neuron. To help elucidate this functional segmentation a new system for simultaneous recording from multiple neighboring neurons was developed. The two parts of this dissertation discuss the technical achievements and scientific discoveries, respectively.
Technology. Simultanous recordings from multiple neighboring neurons were made with four-wire bundle electrodes, or tetrodes, which were adapted to the awake behaving primate preparation. Signals from these electrodes were partitionable into a background process with a 1/f-like spectrum and foreground spiking activity spanning 300-6000 Hz. Continuous voltage recordings were sorted into spike trains using a state-of-the-art clustering algorithm, producing a mean of 3 cells per site. The algorithm classified 96% of spikes correctly when tetrode recordings were confirmed with simultaneous intracellular signals. Recording locations were verified with a new technique that creates electrolytic lesions visible in magnetic resonance imaging, eliminating the need for histological processing. In anticipation of future multi-tetrode work, the chronic chamber microdrive, a device for long-term tetrode delivery, was developed.
Science. Simultaneously recorded neighboring LIP neurons were found to have similar preferred targets in the memory saccade paradigm, but dissimilar peristimulus time histograms, PSTH). A majority of neighboring cell pairs had a difference in preferred directions of under 45° while the trial time of maximal response showed a broader distribution, suggesting homogeneity of tuning with het erogeneity of function. A continuum of response characteristics was present, rather than a set of specific response types; however, a mapping experiment suggests this may be because a given cell's PSTH changes shape as well as amplitude through the response field. Spike train autocovariance was tuned over target and changed through trial epoch, suggesting different mechanisms during memory versus background periods. Mean frequency-domain spike-to-spike coherence was concentrated below 50 Hz with a significant maximum of 0.08; mean time-domain coherence had a narrow peak in the range ±10 ms with a significant maximum of 0.03. Time-domain coherence was found to be untuned for short lags (10 ms), but significantly tuned at larger lags (50 ms).
Resumo:
The theories of relativity and quantum mechanics, the two most important physics discoveries of the 20th century, not only revolutionized our understanding of the nature of space-time and the way matter exists and interacts, but also became the building blocks of what we currently know as modern physics. My thesis studies both subjects in great depths --- this intersection takes place in gravitational-wave physics.
Gravitational waves are "ripples of space-time", long predicted by general relativity. Although indirect evidence of gravitational waves has been discovered from observations of binary pulsars, direct detection of these waves is still actively being pursued. An international array of laser interferometer gravitational-wave detectors has been constructed in the past decade, and a first generation of these detectors has taken several years of data without a discovery. At this moment, these detectors are being upgraded into second-generation configurations, which will have ten times better sensitivity. Kilogram-scale test masses of these detectors, highly isolated from the environment, are probed continuously by photons. The sensitivity of such a quantum measurement can often be limited by the Heisenberg Uncertainty Principle, and during such a measurement, the test masses can be viewed as evolving through a sequence of nearly pure quantum states.
The first part of this thesis (Chapter 2) concerns how to minimize the adverse effect of thermal fluctuations on the sensitivity of advanced gravitational detectors, thereby making them closer to being quantum-limited. My colleagues and I present a detailed analysis of coating thermal noise in advanced gravitational-wave detectors, which is the dominant noise source of Advanced LIGO in the middle of the detection frequency band. We identified the two elastic loss angles, clarified the different components of the coating Brownian noise, and obtained their cross spectral densities.
The second part of this thesis (Chapters 3-7) concerns formulating experimental concepts and analyzing experimental results that demonstrate the quantum mechanical behavior of macroscopic objects - as well as developing theoretical tools for analyzing quantum measurement processes. In Chapter 3, we study the open quantum dynamics of optomechanical experiments in which a single photon strongly influences the quantum state of a mechanical object. We also explain how to engineer the mechanical oscillator's quantum state by modifying the single photon's wave function.
In Chapters 4-5, we build theoretical tools for analyzing the so-called "non-Markovian" quantum measurement processes. Chapter 4 establishes a mathematical formalism that describes the evolution of a quantum system (the plant), which is coupled to a non-Markovian bath (i.e., one with a memory) while at the same time being under continuous quantum measurement (by the probe field). This aims at providing a general framework for analyzing a large class of non-Markovian measurement processes. Chapter 5 develops a way of characterizing the non-Markovianity of a bath (i.e.,whether and to what extent the bath remembers information about the plant) by perturbing the plant and watching for changes in the its subsequent evolution. Chapter 6 re-analyzes a recent measurement of a mechanical oscillator's zero-point fluctuations, revealing nontrivial correlation between the measurement device's sensing noise and the quantum rack-action noise.
Chapter 7 describes a model in which gravity is classical and matter motions are quantized, elaborating how the quantum motions of matter are affected by the fact that gravity is classical. It offers an experimentally plausible way to test this model (hence the nature of gravity) by measuring the center-of-mass motion of a macroscopic object.
The most promising gravitational waves for direct detection are those emitted from highly energetic astrophysical processes, sometimes involving black holes - a type of object predicted by general relativity whose properties depend highly on the strong-field regime of the theory. Although black holes have been inferred to exist at centers of galaxies and in certain so-called X-ray binary objects, detecting gravitational waves emitted by systems containing black holes will offer a much more direct way of observing black holes, providing unprecedented details of space-time geometry in the black-holes' strong-field region.
The third part of this thesis (Chapters 8-11) studies black-hole physics in connection with gravitational-wave detection.
Chapter 8 applies black hole perturbation theory to model the dynamics of a light compact object orbiting around a massive central Schwarzschild black hole. In this chapter, we present a Hamiltonian formalism in which the low-mass object and the metric perturbations of the background spacetime are jointly evolved. Chapter 9 uses WKB techniques to analyze oscillation modes (quasi-normal modes or QNMs) of spinning black holes. We obtain analytical approximations to the spectrum of the weakly-damped QNMs, with relative error O(1/L^2), and connect these frequencies to geometrical features of spherical photon orbits in Kerr spacetime. Chapter 11 focuses mainly on near-extremal Kerr black holes, we discuss a bifurcation in their QNM spectra for certain ranges of (l,m) (the angular quantum numbers) as a/M → 1. With tools prepared in Chapter 9 and 10, in Chapter 11 we obtain an analytical approximate for the scalar Green function in Kerr spacetime.
Resumo:
Homologous recombination is a source of diversity in both natural and directed evolution. Standing genetic variation that has passed the test of natural selection is combined in new ways, generating functional and sometimes unexpected changes. In this work we evaluate the utility of homologous recombination as a protein engineering tool, both in comparison with and combined with other protein engineering techniques, and apply it to an industrially important enzyme: Hypocrea jecorina Cel5a.
Chapter 1 reviews work over the last five years on protein engineering by recombination. Chapter 2 describes the recombination of Hypocrea jecorina Cel5a endoglucanase with homologous enzymes in order to improve its activity at high temperatures. A chimeric Cel5a that is 10.1 °C more stable than wild-type and hydrolyzes 25% more cellulose at elevated temperatures is reported. Chapter 3 describes an investigation into the synergy of thermostable cellulases that have been engineered by recombination and other methods. An engineered endoglucanase and two engineered cellobiohydrolases synergistically hydrolyzed cellulose at high temperatures, releasing over 200% more reducing sugars over 60 h at their optimal mixture relative to the best mixture of wild-type enzymes. These results provide a framework for engineering cellulolytic enzyme mixtures for the industrial conditions of high temperatures and long incubation times.
In addition to this work on recombination, we explored three other problems in protein engineering. Chapter 4 describes an investigation into replacing enzymes with complex cofactors with simple cofactors, using an E. coli enolase as a model system. Chapter 5 describes engineering broad-spectrum aldehyde resistance in Saccharomyces cerevisiae by evolving an alcohol dehydrogenase simultaneously for activity and promiscuity. Chapter 6 describes an attempt to engineer gene-targeted hypermutagenesis into E. coli to facilitate continuous in vivo selection systems.
Resumo:
This thesis is a theoretical work on the space-time dynamic behavior of a nuclear reactor without feedback. Diffusion theory with G-energy groups is used.
In the first part the accuracy of the point kinetics (lumped-parameter description) model is examined. The fundamental approximation of this model is the splitting of the neutron density into a product of a known function of space and an unknown function of time; then the properties of the system can be averaged in space through the use of appropriate weighting functions; as a result a set of ordinary differential equations is obtained for the description of time behavior. It is clear that changes of the shape of the neutron-density distribution due to space-dependent perturbations are neglected. This results to an error in the eigenvalues and it is to this error that bounds are derived. This is done by using the method of weighted residuals to reduce the original eigenvalue problem to that of a real asymmetric matrix. Then Gershgorin-type theorems .are used to find discs in the complex plane in which the eigenvalues are contained. The radii of the discs depend on the perturbation in a simple manner.
In the second part the effect of delayed neutrons on the eigenvalues of the group-diffusion operator is examined. The delayed neutrons cause a shifting of the prompt-neutron eigenvalue s and the appearance of the delayed eigenvalues. Using a simple perturbation method this shifting is calculated and the delayed eigenvalues are predicted with good accuracy.
Resumo:
Planetary atmospheres exist in a seemingly endless variety of physical and chemical environments. There are an equally diverse number of methods by which we can study and characterize atmospheric composition. In order to better understand the fundamental chemistry and physical processes underlying all planetary atmospheres, my research of the past four years has focused on two distinct topics. First, I focused on the data analysis and spectral retrieval of observations obtained by the Ultraviolet Imaging Spectrograph (UVIS) instrument onboard the Cassini spacecraft while in orbit around Saturn. These observations consisted of stellar occultation measurements of Titan's upper atmosphere, probing the chemical composition in the region 300 to 1500 km above Titan's surface. I examined the relative abundances of Titan's two most prevalent chemical species, nitrogen and methane. I also focused on the aerosols that are formed through chemistry involving these two major species, and determined the vertical profiles of aerosol particles as a function of time and latitude. Moving beyond our own solar system, my second topic of investigation involved analysis of infra-red light curves from the Spitzer space telescope, obtained as it measured the light from stars hosting planets of their own. I focused on both transit and eclipse modeling during Spitzer data reduction and analysis. In my initial work, I utilized the data to search for transits of planets a few Earth masses in size. In more recent research, I analyzed secondary eclipses of three exoplanets and constrained the range of possible temperatures and compositions of their atmospheres.
Resumo:
A general review of stochastic processes is given in the introduction; definitions, properties and a rough classification are presented together with the position and scope of the author's work as it fits into the general scheme.
The first section presents a brief summary of the pertinent analytical properties of continuous stochastic processes and their probability-theoretic foundations which are used in the sequel.
The remaining two sections (II and III), comprising the body of the work, are the author's contribution to the theory. It turns out that a very inclusive class of continuous stochastic processes are characterized by a fundamental partial differential equation and its adjoint (the Fokker-Planck equations). The coefficients appearing in those equations assimilate, in a most concise way, all the salient properties of the process, freed from boundary value considerations. The writer’s work consists in characterizing the processes through these coefficients without recourse to solving the partial differential equations.
First, a class of coefficients leading to a unique, continuous process is presented, and several facts are proven to show why this class is restricted. Then, in terms of the coefficients, the unconditional statistics are deduced, these being the mean, variance and covariance. The most general class of coefficients leading to the Gaussian distribution is deduced, and a complete characterization of these processes is presented. By specializing the coefficients, all the known stochastic processes may be readily studied, and some examples of these are presented; viz. the Einstein process, Bachelier process, Ornstein-Uhlenbeck process, etc. The calculations are effectively reduced down to ordinary first order differential equations, and in addition to giving a comprehensive characterization, the derivations are materially simplified over the solution to the original partial differential equations.
In the last section the properties of the integral process are presented. After an expository section on the definition, meaning, and importance of the integral process, a particular example is carried through starting from basic definition. This illustrates the fundamental properties, and an inherent paradox. Next the basic coefficients of the integral process are studied in terms of the original coefficients, and the integral process is uniquely characterized. It is shown that the integral process, with a slight modification, is a continuous Markoff process.
The elementary statistics of the integral process are deduced: means, variances, and covariances, in terms of the original coefficients. It is shown that an integral process is never temporally homogeneous in a non-degenerate process.
Finally, in terms of the original class of admissible coefficients, the statistics of the integral process are explicitly presented, and the integral process of all known continuous processes are specified.
Resumo:
The use of transmission matrices and lumped parameter models for describing continuous systems is the subject of this study. Non-uniform continuous systems which play important roles in practical vibration problems, e.g., torsional oscillations in bars, transverse bending vibrations of beams, etc., are of primary importance.
A new approach for deriving closed form transmission matrices is applied to several classes of non-uniform continuous segments of one dimensional and beam systems. A power series expansion method is presented for determining approximate transmission matrices of any order for segments of non-uniform systems whose solutions cannot be found in closed form. This direct series method is shown to give results comparable to those of the improved lumped parameter models for one dimensional systems.
Four types of lumped parameter models are evaluated on the basis of the uniform continuous one dimensional system by comparing the behavior of the frequency root errors. The lumped parameter models which are based upon a close fit to the low frequency approximation of the exact transmission matrix, at the segment level, are shown to be superior. On this basis an improved lumped parameter model is recommended for approximating non-uniform segments. This new model is compared to a uniform segment approximation and error curves are presented for systems whose areas very quadratically and linearly. The effect of varying segment lengths is investigated for one dimensional systems and results indicate very little improvement in comparison to the use of equal length segments. For purposes of completeness, a brief summary of various lumped parameter models and other techniques which have previously been used to approximate the uniform Bernoulli-Euler beam is a given.
Resumo:
The sun has the potential to power the Earth's total energy needs, but electricity from solar power still constitutes an extremely small fraction of our power generation because of its high cost relative to traditional energy sources. Therefore, the cost of solar must be reduced to realize a more sustainable future. This can be achieved by significantly increasing the efficiency of modules that convert solar radiation to electricity. In this thesis, we consider several strategies to improve the device and photonic design of solar modules to achieve record, ultrahigh (> 50%) solar module efficiencies. First, we investigate the potential of a new passivation treatment, trioctylphosphine sulfide, to increase the performance of small GaAs solar cells for cheaper and more durable modules. We show that small cells (mm2), which currently have a significant efficiency decrease (~ 5%) compared to larger cells (cm2) because small cells have a higher fraction of recombination-active surface from the sidewalls, can achieve significantly higher efficiencies with effective passivation of the sidewalls. We experimentally validate the passivation qualities of treatment by trioctylphosphine sulfide (TOP:S) through four independent studies and show that this facile treatment can enable efficient small devices. Then, we discuss our efforts toward the design and prototyping of a spectrum-splitting module that employs optical elements to divide the incident spectrum into different color bands, which allows for higher efficiencies than traditional methods. We present a design, the polyhedral specular reflector, that has the potential for > 50% module efficiencies even with realistic losses from combined optics, cell, and electrical models. Prototyping efforts of one of these designs using glass concentrators yields an optical module whose combined spectrum-splitting and concentration should correspond to a record module efficiency of 42%. Finally, we consider how the manipulation of radiatively emitted photons from subcells in multijunction architectures can be used to achieve even higher efficiencies than previously thought, inspiring both optimization of incident and radiatively emitted photons for future high efficiency designs. In this thesis work, we explore novel device and photonic designs that represent a significant departure from current solar cell manufacturing techniques and ultimately show the potential for much higher solar cell efficiencies.
Resumo:
As a simplified approach for estimating theoretically the influence of local subsoils upon the ground motion during an earthquake, the problem of an idealized layered system subjected to vertically incident plane body waves was studied. Both the technique of steady-state analysis and the technique of transient analysis have been used to analyze the problem.
In the steady-state analysis, a recursion formula has been derived for obtaining the response of a layered system to sinusoidally steady-state input. Several conclusions are drawn concerning the nature of the amplification spectrum of a nonviscous layered system having its layer stiffnesses increasing with depth. Numerical examples are given to demonstrate the effect of layer parameters on the amplification spectrum of a layered system.
In the transient analysis, two modified shear beam models have been established for obtaining approximately the response of a layered system to earthquake-like excitation. The method of continuous modal analysis was adopted for approximate analysis of the models, with energy dissipation in the layers, if any, taken into account. Numerical examples are given to demonstrate the accuracy of the models and the effect of a layered system in modifying the input motion.
Conditions are established, under which the theory is applicable to predict the influence of local subsoils on the ground motion during an earthquake. To demonstrate the applicability of the models to actual cases, three examples of actually recorded earthquake events are examined. It is concluded that significant modification of the incoming seismic waves, as predicted by the theory, is likely to occur in well defined soft subsoils during an earthquake, provided that certain conditions concerning the nature of the incoming seismic waves are satisfied.