889 resultados para CANCER STEM-CELL


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Injecting male embryonic stem cells into the blastocoel of female embryos occasionally produces female chimeras capable of transmitting the embryonic stem cell genome. In our experiments several embryonic stem cell-derived male offspring from female chimeras were observed to be infertile. Karyotypic analysis of these infertile animals revealed aneuploidy. We examined the karyotypes of an additional 14 offspring not selected for infertility (3 females and 11 males) that had received the embryonic stem cell genome from 5 transmitting female chimeras. The 3 females and 5 of the males had normal karyotypes. Six of the males exhibited nonmosaic aneuploidy, which included four XXY karyotypes, one XYY karyotype, and an X,i(Y) karyotype. The high incidence of XXY and XYY males supports previous evidence for aberrant pairing and segregation of X and Y chromosomes when they are present in oocytes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Unlike fish and amphibians, mammals do not regenerate retinal neurons throughout life. However, neurogenic potential may be conserved in adult mammal retina and it is necessary to identify the factors that regulate retinal progenitor cells (RPC) proliferative capacity to scope their therapeutic potential. Müller cells can be progenitors for retinal neuronal cells and can play an essential role in the restoration of visual function after retinal injury. Some members of the Toll-like receptor (TLR) family, TLR2, TLR3 and TLR4, are related to progenitor cells proliferation. Müller cells are important in retinal regeneration and stable cell lines are useful for the study of retinal stem cell biology. Our purpose was to obtain a Müller-derived cell line with progenitor characteristics and potential interest in regeneration processes. We obtained and characterized a murine Müller-derived cell line (MU-PH1), which proliferates indefinitely in vitro. Our results show that (i) MU-PH1 cells expresses the Müller cell markers Vimentin, S-100, glutamine synthetase and the progenitor and stem cell markers Nestin, Abcg2, Ascl1, α-tubulin and β-III-tubulin, whereas lacks the expression of CRALBP, GFAP, Chx10, Pax6 and Notch1 markers; (ii) MU-PH1 cell line stably express the photoreceptor markers recoverin, transducin, rhodopsin, blue and red/green opsins and also melanopsin; (iii) the presence of opsins was confirmed by the recording of intracellular free calcium levels during light stimulation; (iv) MU-PH1 cell line also expresses the melatonin MT1 and MT2 receptors; (v) MU-PH1 cells express TLR1, 2, 4 and 6 mRNA; (vi) MU-PH1 express TLR2 at cell surface level; (vii) Candida albicans increases TLR2 and TLR6 mRNA expression; (viii) C. albicans or TLR selective agonists (Pam(3)CysSK(4), LPS) did not elicit morphological changes nor TNF-α secretion; (ix) C. albicans and Pam(3)CysSK(4) augmented MU-PH1 neurospheres formation in a statistically significant manner. Our results indicate that MU-PH1 cell line could be of great interest both as a photoreceptor model and in retinal regeneration approaches and that TLR2 may also play a role in retinal cell proliferation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Le cancer de l’ovaire (COv) est le cancer gynécologique le plus létal chez la femme et les traitements existants, chirurgie et chimiothérapie, ont peu évolué au cours des dernières décennies. Nous proposons que la compréhension des différents destins cellulaires tels que la sénescence que peuvent choisir les cellules du cancer de l’ovaire en réponse à la chimiothérapie pourrait conduire à de nouvelles opportunités thérapeutiques. La sénescence cellulaire a été largement associée à l’activité de la protéine TP53, qui est mutée dans plus de 90% des cas de cancer de l’ovaire séreux de haut grade (COv-SHG), la forme la plus commune de la maladie. Dans nos travaux, à partir d’échantillons dérivés de patientes, nous montrons que les cultures primaires du cancer de l’ovaire séreux de haut grade exposées au stress ou à des drogues utilisées en chimiothérapie entrent en senescence grâce à l’activité d’un isoforme du gène CDKN2A (p16INK4A). Dans ces cellules, nous avons évalué les caractéristiques fondamentales de la sénescence cellulaire tels que les altérations morphologiques, l’activité béta galactosidase associée à la sénescence, les dommages à l’ADN, l’arrêt du cycle cellulaire et le phénotype sécrétoire associé à la sénescence. En utilisant des micromatrices tissulaires construites à partir d’échantillons humains de COv-SHG pré- et post-chimiothérapie, accompagnées de leurs données cliniques, nous avons quantifié des marqueurs de sénescence incluant une diminution de la prolifération cellulaire quelques semaines après chimiothérapie. De façon intéressante, l’expression de p16INK4A dans les échantillons de COv-SHG prétraitement corrèle avec une survie prolongée des patientes suite au traitement. Ceci suggère ainsi pour la première fois un impact biologique bénéfique pour la présence de cellules cancéreuses qui sont capable d’activer la sénescence, particulièrement pour le traitement du cancer de l’ovaire. Dans le but de complémenter les thérapies actuelles avec des approches de manipulation pharmacologique de la sénescence, nos résultats suggèrent qu’il serait important de déterminer l’impact positif ou négatif de la sénescence induite par la thérapie sur la progression de la maladie et la survie, pour chaque type de cancer de façon indépendante.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: A new immunoassay for free light chain measurements has been reported to be useful for the diagnosis and monitoring of monoclonal light chain diseases and nonsecretory myeloma. We describe experience with and some potential pitfalls of the assay. Methods: The assay was assessed for precision, sample type and stability, recovery, and harmonization of results between two analyzers on which the reagents are used. Free-light-chain concentrations were measured in healthy individuals (to determine biological variation), patients with monoclonal gammopathy of undetermined significance, myeloma patients after autologous stem cell transplants, and patients with renal disease. Results: Analytical imprecision (CV) was 6-11% for kappa and A free-light-chain measurement and 16% for the calculated kappa/lambda ratio. Biological variation was generally insignificant compared with analytical variation. Despite the same reagent source, values were not completely harmonized between assay systems and may produce discordant free-light-chain ratios. In some patients with clinically stable myeloma, or post transplantation, or with monoclonal gammopathy of undetermined significance, free-light-chain concentration and ratio were within the population reference interval despite the presence of monoclonal intact immunoglobulin in serum. In other patients with monoclonal gammopathy of undetermined significance, values were abnormal although there was no clinical evidence of progression to multiple myeloma. Conclusions: The use of free-light-chain measurements alone cannot differentiate some groups of patients with monoclonal gammopathy from healthy individuals. As with the introduction of any new test, it is essential that more scientific data about use of this assay in different subject groups are available so that results can be interpreted with clinical certainty. (C) 2003 American Association for Clinical Chemistry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Survivors of Hodgkin's lymphoma (HL) frequently have many years to experience the long-term toxicities of combined modality therapies. Also, a significant proportion of HL patients will relapse or have refractory disease, and less than half of these patients will respond to current salvage strategies. 30–50% of HL cases are Epstein–Barr virus associated (EBV-positive HL). The virus is localized to the malignant cells and is clonal. EBV-positive HL is more frequent in childhood, in older adults (>45 years) and in mixed cellularity cases. The survival of EBV-positive HL in the elderly and the immunosuppressed is particularly poor. Despite improvements in our understanding of EBV-positive HL, the true contribution of EBV to the pathogenesis of HL remains unknown. Increased knowledge of the virus’ role in the basic biology of HL may generate novel therapeutic strategies for EBV-positive HL and the presence of EBV-latent antigens in the malignant HL cells may represent a target for cellular immunotherapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Intensive therapy and autologous blood and marrow transplantation (ABMT) is an established post-remission treatment for acute myeloid leukemia (AML), although its exact role remains controversial and few data are available regarding longer-term outcomes. We examined the long-term outcome of patients with AML transplanted at a single center using uniform intensive therapy consisting of etoposide, melphalan and TBI. In all, 145 patients with AML underwent ABMT: 117 in first remission, 21 in second remission and seven beyond second remission. EFS and OS were significantly predicted by remission status (P

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The wide range of currently available treatments for metastatic prostate cancer have demonstrated a modest palliative effect, but none to date has shown an increase in overall survival. The immune system has evolved to protect against infection, however, the modulation of this system represents the possibility of allowing it to identify and destroy cancer cells. The immune system is capable of inciting a powerful immune response against tissues, in the form of transplant rejection, and the potential exists to harness these powers to fight against tumors. Modest clinical responses have been seen in patients with metastatic prostate cancer treated with DC therapies; however, no increase in overall survival has been demonstrated. The current state of DC immunotherapy for prostate cancer is reviewed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A protein-truncating variant of CHEK2, 1100delC, is associated with a moderate increase in breast cancer risk. We have determined the prevalence of this allele in index cases from 300 Australian multiple-case breast cancer families, 95% of which had been found to be negative for mutations in BRCA1 and BRCA2. Only two (0.6%) index cases heterozygous for the CHEK2 mutation were identified. All available relatives in these two families were genotyped, but there was no evidence of co-segregation between the CHEK2 variant and breast cancer. Lymphoblastoid cell lines established from a heterozygous carrier contained approximately 20% of the CHEK2 1100delC mRNA relative to wild-type CHEK2 transcript. However, no truncated CHK2 protein was detectable. Analyses of expression and phosphorylation of wild-type CHK2 suggest that the variant is likely to act by haploinsufficiency. Analysis of CDC25A degradation, a downstream target of CHK2, suggests that some compensation occurs to allow normal degradation of CDC25A. Such compensation of the 1100delC defect in CHEK2 might explain the rather low breast cancer risk associated with the CHEK2 variant, compared to that associated with truncating mutations in BRCA1 or BRCA2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For most of the past century, the prospect of replacing lost or damaged cells in the central nervous system (CNS) was hampered by the opinion that the adult mammalian CNS was incapable of generating new nerve cells. This belief, Like most dogmas, was essentially founded on a lack of experimental evidence to the contrary. The overturning of this 'no new neuron' hypothesis began midway through the twentieth century with a series of reports documenting neurogenesis in the postnatal and adult brain(1), continued with the isolation and in vitro culture of neurogenic cells from the adult mammalian brain(2,3), and culminated in the discovery of a population of muttipotent, selfrenewing cells in the adult CNS (that is, bona fide neural stem cells)(3-5). Although a variety of techniques were initially used, the neurosphere assay (NSA)(3,6) rapidly emerged as the assay of choice and has since become a valuable toot for isolating, and understanding the biology of, embryonic and adult CNS stem cells. Like all technologies, it is not without its limitations. In this article we will hightight several shortcomings of the assay related to its application and interpretation that we believe have led to a significant body of research whose conclusions may well be misleading.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gene expression studies from hematopoietic stem cell (HSC) populations purified to variable degrees have defined a set of sternness genes. Unexpectedly, results also hinted toward a HSC chromatin poised in a wide-open state. With the aim of providing a robust tool for further studies into the molecular biology of HSCs, the studies herein describe the construction and comparative molecular analysis of A-phage cDNA libraries from highly purified HSCs that retained their long-term repopulating activities (long-term HSCs [LT-HSCs]) and from short-term repopulating HSCs that were largely depleted of these activities. Microarray analysis of the libraries confirmed the previous results but also revealed an unforeseen preferential expression of translation- and metabolism-associated genes in the LT-HSCs. Therefore, these data indicate that HSCs are quiescent only in regard of proliferative activities but are in a state of readiness to provide the metabolic and translational activities required after induction of proliferation and exit from the HSC pool.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ability to identify and manipulate stem cells has been a significant advancement in regenerative medicine and has contributed to the development of tissue engineering-based clinical therapies. Difficulties associated with achieving predictable periodontal regeneration, means that novel techniques such as tissue engineering need to be developed in order to regenerate the extensive soft and hard tissue destruction that results from periodontitis. One of the critical requirements for a tissue engineering approach is the delivery of ex vivo expanded progenitor populations or the mobilization of endogenous progenitor cells capable of proliferating and differentiating into the required tissues. By definition, stem cells fulfill these requirements and the recent identification of stem cells within the periodontal ligament represents a significant development in the progress toward predictable periodontal regeneration. In order to explore the importance of stem cells in periodontal wound healing and regeneration, this review will examine contemporary concepts in stem cell biology, the role of periodontal ligament progenitor cells in the regenerative process, recent developments in identifying periodontal stem cells and the clinical implications of these findings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A defining property of murine hematopoietic stein cells (HSCs) is low fluorescence after staining with Hoechst 33342 and Rhodamine 123. These dyes have proven to be remarkably powerful tools in the purification and characterization of HSCs when used alone or in combination with antibodies directed against stem cell epitopes. Hoechst low cells are described as side population (SP) cells by virtue of their typical profiles in Hoechst red versus Hoechst blue bivariate fluorescent-activated cell sorting dot plots. Recently, excitement has been generated by the findings that putative stem cells from solid tissues may also possess this SP phenotype. SP cells have now been isolated from a wide variety of mammalian tissues based on this same dye efflux phenomenon, and in many cases this cell population has been shown to contain apparently multipotent stem cells. What is yet to be clearly addressed is whether cell fusion accounts for this perceived SP multipotency. Indeed, if low fluorescence after Hoechst staining is a phenotype shared by hematopoietic and organ-specific stem cells, do all resident tissue SP cells have bone marrow origins or might the SP phenotype be a property common to all stem cells? Subject to further analysis, the SP phenotype may prove invaluable for the initial isolation of resident tissue stem cells in the absence of definitive cell-surface markers and may have broad-ranging applications in stem cell biology, from the purification of novel stem cell populations to the development of autologous stem cell therapies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The number of cells generated by a proliferating stem or precursor cell can be influenced both by proliferation and by the degree of cell death/survival of the progeny generated. In this study, the extent to which cell survival controls progenitor number was examined by comparing the growth characteristics of neurosphere cultures derived from mice lacking genes for the death inducing Bcl-2 homologue Hara Kiri (Hrk), apoptosis-associated protein 1 (Apaf1), or the prosurvival nuclear factor-kappa B (NF kappa B) subunits p65, p50, or c-rel. We found no evidence that Hrk or Apaf1, and by inference the mitochondrial cell death pathway, are involved in regulating the number of neurosphere-derived progeny. However, we identified the p65p50 NF kappa B dimer as being required for the normal growth and expansion of neurosphere cultures. Genetic loss of both p65 and p50 NF kappa B subunits resulted in a reduced number of progeny but an increased proportion of neurons. No effect on cell survival was observed. This suggests that the number and fate of neural progenitor cells are more strongly regulated by cell cycle control than survival. (c) 2005 Wiley-Liss, Inc.