933 resultados para Breast - Cancer
Resumo:
BACKGROUND Trastuzumab has established efficacy against breast cancer with overexpression or amplification of the HER2 oncogene. The standard of care is 1 year of adjuvant trastuzumab, but the optimum duration of treatment is unknown. We compared 2 years of treatment with trastuzumab with 1 year of treatment, and updated the comparison of 1 year of trastuzumab versus observation at a median follow-up of 8 years, for patients enrolled in the HERceptin Adjuvant (HERA) trial. METHODS The HERA trial is an international, multicentre, randomised, open-label, phase 3 trial comparing treatment with trastuzumab for 1 and 2 years with observation after standard neoadjuvant chemotherapy, adjuvant chemotherapy, or both in 5102 patients with HER2-positive early breast cancer. The primary endpoint was disease-free survival. The comparison of 2 years versus 1 year of trastuzumab treatment involved a landmark analysis of 3105 patients who were disease-free 12 months after randomisation to one of the trastuzumab groups, and was planned after observing at least 725 disease-free survival events. The updated intention-to-treat comparison of 1 year trastuzumab treatment versus observation alone in 3399 patients at a median follow-up of 8 years (range 0-10) is also reported. This study is registered with ClinicalTrials.gov, number NCT00045032. FINDINGS We recorded 367 events of disease-free survival in 1552 patients in the 1 year group and 367 events in 1553 patients in the 2 year group (hazard ratio [HR] 0·99, 95% CI 0·85-1·14, p=0·86). Grade 3-4 adverse events and decreases in left ventricular ejection fraction during treatment were reported more frequently in the 2 year treatment group than in the 1 year group (342 [20·4%] vs 275 [16·3%] grade 3-4 adverse events, and 120 [7·2%] vs 69 [4·1%] decreases in left ventricular ejection fraction, respectively). HRs for a comparison of 1 year of trastuzumab treatment versus observation were 0·76 (95% CI 0·67-0·86, p<0·0001) for disease-free survival and 0·76 (0·65-0·88, p=0·0005) for overall survival, despite crossover of 884 (52%) patients from the observation group to trastuzumab therapy. INTERPRETATION 2 years of adjuvant trastuzumab is not more effective than is 1 year of treatment for patients with HER2-positive early breast cancer. 1 year of treatment provides a significant disease-free and overall survival benefit compared with observation and remains the standard of care. FUNDING F Hoffmann-La Roche (Roche).
Resumo:
BACKGROUND The addition of bevacizumab to chemotherapy improves progression-free survival in metastatic breast cancer and pathological complete response rates in the neoadjuvant setting. Micrometastases are dependent on angiogenesis, suggesting that patients might benefit from anti-angiogenic strategies in the adjuvant setting. We therefore assessed the addition of bevacizumab to chemotherapy in the adjuvant setting for women with triple-negative breast cancer. METHODS For this open-label, randomised phase 3 trial we recruited patients with centrally confirmed triple-negative operable primary invasive breast cancer from 360 sites in 37 countries. We randomly allocated patients aged 18 years or older (1:1 with block randomisation; stratified by nodal status, chemotherapy [with an anthracycline, taxane, or both], hormone receptor status [negative vs low], and type of surgery) to receive a minimum of four cycles of chemotherapy either alone or with bevacizumab (equivalent of 5 mg/kg every week for 1 year). The primary endpoint was invasive disease-free survival (IDFS). Efficacy analyses were based on the intention-to-treat population, safety analyses were done on all patients who received at least one dose of study drug, and plasma biomarker analyses were done on all treated patients consenting to biomarker analyses and providing a measurable baseline plasma sample. This trial is registered with ClinicalTrials.gov, number NCT00528567. FINDINGS Between Dec 3, 2007, and March 8, 2010, we randomly assigned 1290 patients to receive chemotherapy alone and 1301 to receive bevacizumab plus chemotherapy. Most patients received anthracycline-containing therapy; 1638 (63%) of the 2591 patients had node-negative disease. At the time of analysis of IDFS, median follow-up was 31·5 months (IQR 25·6-36·8) in the chemotherapy-alone group and 32·0 months (27·5-36·9) in the bevacizumab group. At the time of the primary analysis, IDFS events had been reported in 205 patients (16%) in the chemotherapy-alone group and in 188 patients (14%) in the bevacizumab group (hazard ratio [HR] in stratified log-rank analysis 0·87, 95% CI 0·72-1·07; p=0·18). 3-year IDFS was 82·7% (95% CI 80·5-85·0) with chemotherapy alone and 83·7% (81·4-86·0) with bevacizumab and chemotherapy. After 200 deaths, no difference in overall survival was noted between the groups (HR 0·84, 95% CI 0·64-1·12; p=0·23). Exploratory biomarker assessment suggests that patients with high pre-treatment plasma VEGFR-2 might benefit from the addition of bevacizumab (Cox interaction test p=0·029). Use of bevacizumab versus chemotherapy alone was associated with increased incidences of grade 3 or worse hypertension (154 patients [12%] vs eight patients [1%]), severe cardiac events occurring at any point during the 18-month safety reporting period (19 [1%] vs two [<0·5%]), and treatment discontinuation (bevacizumab, chemotherapy, or both; 256 [20%] vs 30 [2%]); we recorded no increase in fatal adverse events with bevacizumab (four [<0·5%] vs three [<0·5%]). INTERPRETATION Bevacizumab cannot be recommended as adjuvant treatment in unselected patients with triple-negative breast cancer. Further follow-up is needed to assess the potential effect of bevacizumab on overall survival.
Resumo:
The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable approach to risk estimation would be to use organ-specific non-linear risk models applied to the dose distributions of organs within or near the treatment fields (lungs and contralateral breast in the case of breast radiotherapy) as the majority of radiation-induced secondary cancers are found in the beam-bordering regions.
Resumo:
BACKGROUND Suppression of ovarian estrogen production reduces the recurrence of hormone-receptor-positive early breast cancer in premenopausal women, but its value when added to tamoxifen is uncertain. METHODS We randomly assigned 3066 premenopausal women, stratified according to prior receipt or nonreceipt of chemotherapy, to receive 5 years of tamoxifen, tamoxifen plus ovarian suppression, or exemestane plus ovarian suppression. The primary analysis tested the hypothesis that tamoxifen plus ovarian suppression would improve disease-free survival, as compared with tamoxifen alone. In the primary analysis, 46.7% of the patients had not received chemotherapy previously, and 53.3% had received chemotherapy and remained premenopausal. RESULTS After a median follow-up of 67 months, the estimated disease-free survival rate at 5 years was 86.6% in the tamoxifen-ovarian suppression group and 84.7% in the tamoxifen group (hazard ratio for disease recurrence, second invasive cancer, or death, 0.83; 95% confidence interval [CI], 0.66 to 1.04; P=0.10). Multivariable allowance for prognostic factors suggested a greater treatment effect with tamoxifen plus ovarian suppression than with tamoxifen alone (hazard ratio, 0.78; 95% CI, 0.62 to 0.98). Most recurrences occurred in patients who had received prior chemotherapy, among whom the rate of freedom from breast cancer at 5 years was 82.5% in the tamoxifen-ovarian suppression group and 78.0% in the tamoxifen group (hazard ratio for recurrence, 0.78; 95% CI, 0.60 to 1.02). At 5 years, the rate of freedom from breast cancer was 85.7% in the exemestane-ovarian suppression group (hazard ratio for recurrence vs. tamoxifen, 0.65; 95% CI, 0.49 to 0.87). CONCLUSIONS Adding ovarian suppression to tamoxifen did not provide a significant benefit in the overall study population. However, for women who were at sufficient risk for recurrence to warrant adjuvant chemotherapy and who remained premenopausal, the addition of ovarian suppression improved disease outcomes. Further improvement was seen with the use of exemestane plus ovarian suppression. (Funded by Pfizer and others; SOFT ClinicalTrials.gov number, NCT00066690.).
Resumo:
BACKGROUND Distinct populations of neutrophils have been identified based on the expression of intercellular adhesion molecule 1 (ICAM1, CD54) and chemokine receptor 1 (CXCR1, interleukin 8 receptor α). AIM We analyzed the expression of vascular endothelial growth factor receptor 1 (VEGFR1), a physiological negative regulator of angiogenesis, on distinct populations of neutrophils from the blood of patients before and after adjuvant chemotherapy for breast cancer. MATERIALS AND METHODS Neutrophil populations were distinguished as reverse transmigrated (ICAM1(high)/CXCR1(low)), naïve (ICAM1(low)/CXCR1(high)), or tissue-resident neutrophils (ICAM1(low)/CXCR1(low)), and their VEGFR1 expression quantified. RESULTS Reverse transmigrated ICAM1(high)/CXCR1(low) neutrophilic granulocytes decreased significantly after chemotherapy and these were also the cells with highest mean fluorescence intensity for VEGFR1. CONCLUSION Chemotherapy mainly reduces the number of reverse transmigrated long-lived ICAM1(high)/CXCR1(low) VEGFR1-expressing neutrophils. The decrease of antiangiogenic VEGFR1 may have a potential impact on tumour angiogenesis in patients undergoing adjuvant chemotherapy.
Resumo:
BACKGROUND Breast cancer (BC) is the most commonly diagnosed cancer and a leading cause of death in younger women. METHODS We analysed incidence, mortality and relative survival (RS) in women with BC aged 20-49 years at diagnosis, between 1996 and 2009 in Switzerland. Trends are reported as estimated annual percentage changes (EAPC). RESULTS Our findings confirm a slight increase in the incidence of BC in younger Swiss women during the period 1996-2009. The increase was largest in women aged 20-39 years (EAPC 1.8%). Mortality decreased in both age groups with similar EAPCs. Survival was lowest among women 20-39 years (10-year RS 73.4%). We observed no notable differences in stage of disease at diagnosis that might explain these differences. CONCLUSIONS The increased incidence and lower survival in younger women diagnosed with BC in Switzerland indicates possible differences in risk factors, tumour biology and treatment characteristics that require additional examination.
Resumo:
The population-based case–control study CECILE investigated the impact of various menopausal hormone therapy (MHT) products on breast cancer (BC) risk in 1,555 postmenopausal women [1]. The case group (n = 739) included incident cases of in situ (!) or invasive BC in postmenopausal women. The control group (n = 816) included women from the general population within predefined quotas by age and socio-economic status (SES). While quotas by age were applied to obtain similar distributions by age among controls and among cases, quotas by SES in control women were applied to reflect the distribution by SES of women in the general population in the study area. Data of participants were obtained by a structured questionnaire during in-person interviews, and from pathology reports if applicable, respectively. Women were divided into current and past MHT user. MHTs were classified in estrogen-only therapy (ET), estrogen combined with progestin therapy (EPT) and tibolone. EPT was subdivided in three subtypes according to the progestogen constituent: natural micronized progesterone, progesterone derivatives, and testosterone derivatives. In comparison to never MHT users, any current or past MHT use (ET, EPT, tibolone) was not associated with an increased BC risk. However, in subanalysis BC risk was significantly increased for current use of EPT for 4 or more years (n = 73 cases and n = 56 controls, adjusted OR 1.55; 95 % CI 1.02–2.36). Within the group of current EPT users for 4 or more years, 14 cases had used estrogens combined with micronized progesterone (n = 17 controls), and 55 a combination with a synthetic progestogen (n = 34 controls), respectively. Compared to never MHT use, current use of EPT containing a synthetic progestogen for 4 or more years was associated with a significantly increased BC risk (adjusted OR 2.07; 95 % CI 1.26–3.39), but EPT containing micronized progesterone was not (adjusted OR 0.79; 95 % CI 0.37–1.71). 73 % of current MHT users started treatment within the first year of onset of menopause. Early EPT (n = 52 cases and n = 38 controls, adjusted OR 1.65; 95 % CI 1.02–2.69), but not early ET, starters had a significantly higher BC risk compared to never MHT users. In contrast, MHT initiation beyond 1 year after menopause was not associated with an increased BC risk. The authors concluded that: (1) ET and EPT containing natural progesterone did not increase BC risk whereas, (2) BC risk was increased in users of tibolone or EPT containing a synthetic progestogen, respectively, and that (3) MHT use early after onset of menopause was associated with an increased BC risk as compared to women who delay MHT beyond 1 or more years.
Resumo:
BACKGROUND Adjuvant therapy with an aromatase inhibitor improves outcomes, as compared with tamoxifen, in postmenopausal women with hormone-receptor-positive breast cancer. METHODS In two phase 3 trials, we randomly assigned premenopausal women with hormone-receptor-positive early breast cancer to the aromatase inhibitor exemestane plus ovarian suppression or tamoxifen plus ovarian suppression for a period of 5 years. Suppression of ovarian estrogen production was achieved with the use of the gonadotropin-releasing-hormone agonist triptorelin, oophorectomy, or ovarian irradiation. The primary analysis combined data from 4690 patients in the two trials. RESULTS After a median follow-up of 68 months, disease-free survival at 5 years was 91.1% in the exemestane-ovarian suppression group and 87.3% in the tamoxifen-ovarian suppression group (hazard ratio for disease recurrence, second invasive cancer, or death, 0.72; 95% confidence interval [CI], 0.60 to 0.85; P<0.001). The rate of freedom from breast cancer at 5 years was 92.8% in the exemestane-ovarian suppression group, as compared with 88.8% in the tamoxifen-ovarian suppression group (hazard ratio for recurrence, 0.66; 95% CI, 0.55 to 0.80; P<0.001). With 194 deaths (4.1% of the patients), overall survival did not differ significantly between the two groups (hazard ratio for death in the exemestane-ovarian suppression group, 1.14; 95% CI, 0.86 to 1.51; P=0.37). Selected adverse events of grade 3 or 4 were reported for 30.6% of the patients in the exemestane-ovarian suppression group and 29.4% of those in the tamoxifen-ovarian suppression group, with profiles similar to those for postmenopausal women. CONCLUSIONS In premenopausal women with hormone-receptor-positive early breast cancer, adjuvant treatment with exemestane plus ovarian suppression, as compared with tamoxifen plus ovarian suppression, significantly reduced recurrence. (Funded by Pfizer and others; TEXT and SOFT ClinicalTrials.gov numbers, NCT00066703 and NCT00066690, respectively.).
Resumo:
Tumor budding refers to single or small cluster of tumor cells detached from the main tumor mass. In colon cancer high tumor budding is associated with positive lymph nodes and worse prognosis. Therefore, we investigated the value of tumor budding as a predictive feature of lymph node status in breast cancer (BC). Whole tissue sections from 148 surgical resection specimens (SRS) and 99 matched preoperative core biopsies (CB) with invasive BC of no special type were analyzed on one slide stained with pan-cytokeratin. In SRS, the total number of intratumoral (ITB) and peripheral tumor buds (PTB) in ten high-power fields (HPF) were counted. A bud was defined as a single tumor cell or a cluster of up to five tumor cells. High tumor budding equated to scores averaging >4 tumor buds across 10HPFs. In CB high tumor budding was defined as ≥10 buds/HPF. The results were correlated with pathological parameters. In SRS high PTB stratified BC with lymph node metastases (p ≤ 0.03) and lymphatic invasion (p ≤ 0.015). In CB high tumor budding was significantly (p = 0.0063) associated with venous invasion. Pathologists are able, based on morphology, to categorize BC into a high and low risk groups based in part on lymph node status. This risk assessment can be easily performed during routine diagnostics and it is time and cost effective. These results suggest that high PTB is associated with loco-regional metastasis, highlighting the possibility that this tumor feature may help in therapeutic decision-making.
Resumo:
All-trans retinoic acid (ATRA), a pan-retinoic acid receptor (RAR) agonist, is, along with other retinoids, a promising therapeutic agent for the treatment of a variety of solid tumors. On the one hand, preclinical studies have shown promising anticancer effects of ATRA in breast cancer; on the other hand, resistances occurred. Autophagy is a cellular recycling process that allows the degradation of bulk cellular contents. Tumor cells may take advantage of autophagy to cope with stress caused by anticancer drugs. We therefore wondered if autophagy is activated by ATRA in mammary tumor cells and if modulation of autophagy might be a potential novel treatment strategy. Indeed, ATRA induces autophagic flux in ATRA-sensitive but not in ATRA-resistant human breast cancer cells. Moreover, using different RAR agonists as well as RARα-knockdown breast cancer cells, we demonstrate that autophagy is dependent on RARα activation. Interestingly, inhibition of autophagy in breast cancer cells by either genetic or pharmacological approaches resulted in significantly increased apoptosis under ATRA treatment and attenuated epithelial differentiation. In summary, our findings demonstrate that ATRA-induced autophagy is mediated by RARα in breast cancer cells. Furthermore, inhibition of autophagy results in enhanced apoptosis. This points to a potential novel treatment strategy for a selected group of breast cancer patients where ATRA and autophagy inhibitors are applied simultaneously.
Resumo:
Our commentary of the article “‘Screening’ for Breast Cancer: Misguided Research Misinforming Public Policies” has two main parts. First we address some of the methodological points raised by Professor Miettinen. Then we review more specific aspects of the Swiss Medical Board statement on mammography screening for early detection of breast cancer.
Resumo:
OBJECTIVE The aim was to develop a delineation guideline for target definition for APBI or boost by consensus of the Breast Working Group of GEC-ESTRO. PROPOSED RECOMMENDATIONS Appropriate delineation of CTV (PTV) with low inter- and intra-observer variability in clinical practice is complex and needs various steps as: (1) Detailed knowledge of primary surgical procedure, of all details of pathology, as well as of preoperative imaging. (2) Definition of tumour localization before breast conserving surgery inside the breast and translation of this information in the postoperative CT imaging data set. (3) Calculation of the size of total safety margins. The size should be at least 2 cm. (4) Definition of the target. (5) Delineation of the target according to defined rules. CONCLUSION Providing guidelines based on the consensus of a group of experts should make it possible to achieve a reproducible and consistent definition of CTV (PTV) for Accelerated Partial Breast Irradiation (APBI) or boost irradiation after breast conserving closed cavity surgery, and helps to define it after selected cases of oncoplastic surgery.
Resumo:
BACKGROUND With the advent of new and more efficient anti-androgen drugs targeting androgen receptor (AR) in breast cancer (BC) is becoming an increasingly important area of investigation. This would potentially be most useful in triple negative BC (TNBC), where better therapies are still needed. The assessment of AR status is generally performed on the primary tumor even if the tumor has already metastasized. Very little is known regarding discrepancies of AR status during tumor progression. To determine the prevalence of AR positivity, with emphasis on TNBCs, and to investigate AR status during tumor progression, we evaluated a large series of primary BCs and matching metastases and recurrences. METHODS AR status was performed on 356 primary BCs, 135 matching metastases, and 12 recurrences using a next-generation Tissue Microarray (ngTMA). A commercially available AR antibody was used to determine AR-status by immunohistochemistry. AR positivity was defined as any nuclear staining in tumor cells ≥1 %. AR expression was correlated with pathological tumor features of the primary tumor. Additionally, the concordance rate of AR expression between the different tumor sites was determined. RESULTS AR status was positive in: 87 % (307/353) of primary tumors, 86.1 % (105/122) of metastases, and in 66.7 % (8/12) of recurrences. TNBC tested positive in 11.4 %, (4/35) of BCs. A discrepant result was seen in 4.3 % (5/117) of primary BC and matching lymph node (LN) metastases. Three AR negative primary BCs were positive in the matching LN metastasis, representing 17.6 % of all negative BCs with lymph node metastases (3/17). Two AR positive primary BCs were negative in the matching LN metastasis, representing 2.0 % of all AR positive BCs with LN metastases (2/100). No discrepancies were seen between primary BC and distant metastases or recurrence (n = 17). CONCLUSIONS Most primary (87 %) and metastasized (86.1 %) BCs are AR positive including a significant fraction of TNBCs (11.4 %). Further, AR status is highly conserved during tumor progression and a change only occurs in a small fraction (4.1 %). Our study supports the notion that targeting AR could be effective for many BC patients and that re-testing of AR status in formerly negative or mixed type BC's is recommended.
Resumo:
In a mouse tumour model for hereditary breast cancer, we previously explored the anti-cancer effects of docetaxel, ritonavir and the combination of both and studied the effect of ritonavir on the intratumoural concentration of docetaxel. The objective of the current study was to apply pharmacokinetic (PK)-pharmacodynamic (PD) modelling on this previous study to further elucidate and quantify the effects of docetaxel when co-administered with ritonavir. PK models of docetaxel and ritonavir in plasma and in tumour were developed. The effect of ritonavir on docetaxel concentration in the systemic circulation of Cyp3a knock-out mice and in the implanted tumour (with inherent Cyp3a expression) was studied, respectively. Subsequently, we designed a tumour growth inhibition model that included the inhibitory effects of both docetaxel and ritonavir. Ritonavir decreased docetaxel systemic clearance with 8% (relative standard error 0.4%) in the co-treated group compared to that in the docetaxel only-treated group. The docetaxel concentration in tumour tissues was significantly increased by ritonavir with mean area under the concentration-time curve 2.5-fold higher when combined with ritonavir. Observed tumour volume profiles in mice could be properly described by the PK/PD model. In the co-treated group, the enhanced anti-tumour effect was mainly due to increased docetaxel tumour concentration; however, we demonstrated a small but significant anti-tumour effect of ritonavir addition (p value <0.001). In conclusion, we showed that the increased anti-tumour effect observed when docetaxel is combined with ritonavir is mainly caused by enhanced docetaxel tumour concentration and to a minor extent by a direct anti-tumour effect of ritonavir.