996 resultados para Bering Sea controversy.
Resumo:
Through the processes of the biological pump, carbon is exported to the deep ocean in the form of dissolved and particulate organic matter. There are several ways by which downward export fluxes can be estimated. The great attraction of the 234Th technique is that its fundamental operation allows a downward flux rate to be determined from a single water column profile of thorium coupled to an estimate of POC/234Th ratio in sinking matter. We present a database of 723 estimates of organic carbon export from the surface ocean derived from the 234Th technique. Data were collected from tables in papers published between 1985 and 2013 only. We also present sampling dates, publication dates and sampling areas. Most of the open ocean Longhurst provinces are represented by several measurements. However, the Western Pacific, the Atlantic Arctic, South Pacific and the South Indian Ocean are not well represented. There is a variety of integration depths ranging from surface to 220m. Globally the fluxes ranged from -22 to 125 mmol of C/m**2/d. We believe that this database is important for providing new global estimate of the magnitude of the biological carbon pump.
Resumo:
Several mechanisms for self-enhancing feedback instabilities in marine ecosystems are identified and briefly elaborated. It appears that adverse phases of operation may be abruptly triggered by explosive breakouts in abundance of one or more previously suppressed populations. Moreover, an evident capacity of marine organisms to accomplish extensive geographic habitat expansions may expand and perpetuate a breakout event. This set of conceptual elements provides a framework for interpretation of a sequence of events that has occurred in the Northern Benguela Current Large Marine Ecosystem (off south-western Africa). This history can illustrate how multiple feedback loops might interact with one another in unanticipated and quite malignant ways, leading not only to collapse of customary resource stocks but also to degradation of the ecosystem to such an extent that disruption of customary goods and services may go beyond fisheries alone to adversely affect other major global ecosystem concerns (e.g. proliferations of jellyfish and other slimy, stingy, toxic and/or noxious organisms, perhaps even climate change itself, etc.). The wisdom of management interventions designed to interrupt an adverse mode of feedback operation is pondered. Research pathways are proposed that may lead to improved insights needed: (i) to avoid potential 'triggers' that might set adverse phases of feedback loop operation into motion; and (ii) to diagnose and properly evaluate plausible actions to reverse adverse phases of feedback operation that might already have been set in motion. These pathways include the drawing of inferences from available 'quasi-experiments' produced either by short-term climatic variation or inadvertently in the course of biased exploitation practices, and inter-regional applications of the comparative method of science.
Resumo:
A compilation of basal dates of peatland initiation across the northern high latitudes, associated metadata including location, age, raw and calibrated radiocarbon ages, and associated references. Includes previously published datasets from sources below as well as 365 new data points.
Resumo:
We present high-resolution records of sedimentary nitrogen (d15Nbulk) and carbon isotope ratios (d13Cbulk) from piston core SO201-2-85KL located in the western Bering Sea. The records reflect changes in surface nitrate utilization and terrestrial organic matter contribution in submillennial resolution that span the last 180 kyr. The d15Nbulk record is characterized by a minimum during the penultimate interglacial indicating low nitrate utilization (~62-80%) despite the relatively high export production inferred from opal concentrations along with a significant reduction in the terrestrial organic matter fraction (mterr). This suggests that the consumption of the nitrate pool at our site was incomplete and even more reduced than today (~84%). d15Nbulk increases from Marine Isotope Stage (MIS) 5.4 and culminates during the Last Glacial Maximum, which indicates that nitrate utilization in the Bering Sea was raised during cold intervals (MIS 5.4, 5.2, 4) and almost complete during MIS 3 and 2 (~93-100%). This is in agreement with previous hypotheses suggesting that stronger glacial stratification reduced the nutrient supply from the subeuphotic zone, thereby increasing the iron-to-nutrient ratio and therefore the nitrate utilization in the mixed surface layer. Large variations in d15Nbulk were also recorded from 180 to 130 ka BP (MIS 6), indicating a potential link to insolation and sea-level forcing and its related feedbacks. Millennial-scale oscillations were observed in d15Nbulk and d13Cbulk that might be related to Greenland interstadials.