933 resultados para Bayesian hierarchical linear model
Resumo:
This paper proposes a common and tractable framework for analyzingdifferent definitions of fixed and random effects in a contant-slopevariable-intercept model. It is shown that, regardless of whethereffects (i) are treated as parameters or as an error term, (ii) areestimated in different stages of a hierarchical model, or whether (iii)correlation between effects and regressors is allowed, when the sameinformation on effects is introduced into all estimation methods, theresulting slope estimator is also the same across methods. If differentmethods produce different results, it is ultimately because differentinformation is being used for each methods.
Resumo:
We conduct a large-scale comparative study on linearly combining superparent-one-dependence estimators (SPODEs), a popular family of seminaive Bayesian classifiers. Altogether, 16 model selection and weighing schemes, 58 benchmark data sets, and various statistical tests are employed. This paper's main contributions are threefold. First, it formally presents each scheme's definition, rationale, and time complexity and hence can serve as a comprehensive reference for researchers interested in ensemble learning. Second, it offers bias-variance analysis for each scheme's classification error performance. Third, it identifies effective schemes that meet various needs in practice. This leads to accurate and fast classification algorithms which have an immediate and significant impact on real-world applications. Another important feature of our study is using a variety of statistical tests to evaluate multiple learning methods across multiple data sets.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the regional scale represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed a downscaling procedure based on a non-linear Bayesian sequential simulation approach. The basic objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity, which is available throughout the model space. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariate kernel density function. This method is then applied to the stochastic integration of low-resolution, re- gional-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities. Finally, the overall viability of this downscaling approach is tested and verified by performing and comparing flow and transport simulation through the original and the downscaled hydraulic conductivity fields. Our results indicate that the proposed procedure does indeed allow for obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the regional scale represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed an upscaling procedure based on a Bayesian sequential simulation approach. This method is then applied to the stochastic integration of low-resolution, regional-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities. Finally, the overall viability of this upscaling approach is tested and verified by performing and comparing flow and transport simulation through the original and the upscaled hydraulic conductivity fields. Our results indicate that the proposed procedure does indeed allow for obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.
Resumo:
The objective of this study was to adapt a nonlinear model (Wang and Engel - WE) for simulating the phenology of maize (Zea mays L.), and to evaluate this model and a linear one (thermal time), in order to predict developmental stages of a field-grown maize variety. A field experiment, during 2005/2006 and 2006/2007 was conducted in Santa Maria, RS, Brazil, in two growing seasons, with seven sowing dates each. Dates of emergence, silking, and physiological maturity of the maize variety BRS Missões were recorded in six replications in each sowing date. Data collected in 2005/2006 growing season were used to estimate the coefficients of the two models, and data collected in the 2006/2007 growing season were used as independent data set for model evaluations. The nonlinear WE model accurately predicted the date of silking and physiological maturity, and had a lower root mean square error (RMSE) than the linear (thermal time) model. The overall RMSE for silking and physiological maturity was 2.7 and 4.8 days with WE model, and 5.6 and 8.3 days with thermal time model, respectively.
Resumo:
Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space is high dimensional. Here, we present a 2-D pixel-based MCMC inversion of plane-wave electromagnetic (EM) data. Using synthetic data, we investigate how model parameter uncertainty depends on model structure constraints using different norms of the likelihood function and the model constraints, and study the added benefits of joint inversion of EM and electrical resistivity tomography (ERT) data. Our results demonstrate that model structure constraints are necessary to stabilize the MCMC inversion results of a highly discretized model. These constraints decrease model parameter uncertainty and facilitate model interpretation. A drawback is that these constraints may lead to posterior distributions that do not fully include the true underlying model, because some of its features exhibit a low sensitivity to the EM data, and hence are difficult to resolve. This problem can be partly mitigated if the plane-wave EM data is augmented with ERT observations. The hierarchical Bayesian inverse formulation introduced and used herein is able to successfully recover the probabilistic properties of the measurement data errors and a model regularization weight. Application of the proposed inversion methodology to field data from an aquifer demonstrates that the posterior mean model realization is very similar to that derived from a deterministic inversion with similar model constraints.
Resumo:
Alpine tree-line ecotones are characterized by marked changes at small spatial scales that may result in a variety of physiognomies. A set of alternative individual-based models was tested with data from four contrasting Pinus uncinata ecotones in the central Spanish Pyrenees to reveal the minimal subset of processes required for tree-line formation. A Bayesian approach combined with Markov chain Monte Carlo methods was employed to obtain the posterior distribution of model parameters, allowing the use of model selection procedures. The main features of real tree lines emerged only in models considering nonlinear responses in individual rates of growth or mortality with respect to the altitudinal gradient. Variation in tree-line physiognomy reflected mainly changes in the relative importance of these nonlinear responses, while other processes, such as dispersal limitation and facilitation, played a secondary role. Different nonlinear responses also determined the presence or absence of krummholz, in agreement with recent findings highlighting a different response of diffuse and abrupt or krummholz tree lines to climate change. The method presented here can be widely applied in individual-based simulation models and will turn model selection and evaluation in this type of models into a more transparent, effective, and efficient exercise.
Resumo:
A rotating machine usually consists of a rotor and bearings that supports it. The nonidealities in these components may excite vibration of the rotating system. The uncontrolled vibrations may lead to excessive wearing of the components of the rotating machine or reduce the process quality. Vibrations may be harmful even when amplitudes are seemingly low, as is usually the case in superharmonic vibration that takes place below the first critical speed of the rotating machine. Superharmonic vibration is excited when the rotational velocity of the machine is a fraction of the natural frequency of the system. In such a situation, a part of the machine’s rotational energy is transformed into vibration energy. The amount of vibration energy should be minimised in the design of rotating machines. The superharmonic vibration phenomena can be studied by analysing the coupled rotor-bearing system employing a multibody simulation approach. This research is focused on the modelling of hydrodynamic journal bearings and rotorbearing systems supported by journal bearings. In particular, the non-idealities affecting the rotor-bearing system and their effect on the superharmonic vibration of the rotating system are analysed. A comparison of computationally efficient journal bearing models is carried out in order to validate one model for further development. The selected bearing model is improved in order to take the waviness of the shaft journal into account. The improved model is implemented and analyzed in a multibody simulation code. A rotor-bearing system that consists of a flexible tube roll, two journal bearings and a supporting structure is analysed employing the multibody simulation technique. The modelled non-idealities are the shell thickness variation in the tube roll and the waviness of the shaft journal in the bearing assembly. Both modelled non-idealities may cause subharmonic resonance in the system. In multibody simulation, the coupled effect of the non-idealities can be captured in the analysis. Additionally one non-ideality is presented that does not excite the vibrations itself but affects the response of the rotorbearing system, namely the waviness of the bearing bushing which is the non-rotating part of the bearing system. The modelled system is verified with measurements performed on a test rig. In the measurements the waviness of bearing bushing was not measured and therefore it’s affect on the response was not verified. In conclusion, the selected modelling approach is an appropriate method when analysing the response of the rotor-bearing system. When comparing the simulated results to the measured ones, the overall agreement between the results is concluded to be good.
Resumo:
The present paper describes an integrated micro/macro mechanical study of the elastic-viscoplastic behavior of unidirectional metal matrix composites (MMC). The micromechanical analysis of the elastic moduli is based on the Composites Cylinder Assemblage model (CCA) with comparisons also draw with a Representative Unit Cell (RUC) technique. These "homogenization" techniques are later incorporated into the Vanishing Fiber Diameter (VFD) model and a new formulation is proposed. The concept of a smeared element procedure is employed in conjunction with two different versions of the Bodner and Partom elastic-viscoplastic constitutive model for the associated macroscopic analysis. The formulations developed are also compared against experimental and analytical results available in the literature.
Resumo:
This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.
Resumo:
Concentrated solar power (CSP) is a renewable energy technology, which could contribute to overcoming global problems related to pollution emissions and increasing energy demand. CSP utilizes solar irradiation, which is a variable source of energy. In order to utilize CSP technology in energy production and reliably operate a solar field including thermal energy storage system, dynamic simulation tools are needed in order to study the dynamics of the solar field, to optimize production and develop control systems. The object of this Master’s Thesis is to compare different concentrated solar power technologies and configure a dynamic solar field model of one selected CSP field design in the dynamic simulation program Apros, owned by VTT and Fortum. The configured model is based on German Novatec Solar’s linear Fresnel reflector design. Solar collector components including dimensions and performance calculation were developed, as well as a simple solar field control system. The preliminary simulation results of two simulation cases under clear sky conditions were good; the desired and stable superheated steam conditions were maintained in both cases, while, as expected, the amount of steam produced was reduced in the case having lower irradiation conditions. As a result of the model development process, it can be concluded, that the configured model is working successfully and that Apros is a very capable and flexible tool for configuring new solar field models and control systems and simulating solar field dynamic behaviour.
Resumo:
Phenomena in cyber domain, especially threats to security and privacy, have proven an increasingly heated topic addressed by different writers and scholars at an increasing pace – both nationally and internationally. However little public research has been done on the subject of cyber intelligence. The main research question of the thesis was: To what extent is the applicability of cyber intelligence acquisition methods circumstantial? The study was conducted in sequential a manner, starting with defining the concept of intelligence in cyber domain and identifying its key attributes, followed by identifying the range of intelligence methods in cyber domain, criteria influencing their applicability, and types of operatives utilizing cyber intelligence. The methods and criteria were refined into a hierarchical model. The existing conceptions of cyber intelligence were mapped through an extensive literature study on a wide variety of sources. The established understanding was further developed through 15 semi-structured interviews with experts of different backgrounds, whose wide range of points of view proved to substantially enhance the perspective on the subject. Four of the interviewed experts participated in a relatively extensive survey based on the constructed hierarchical model on cyber intelligence that was formulated in to an AHP hierarchy and executed in the Expert Choice Comparion online application. It was concluded that Intelligence in cyber domain is an endorsing, cross-cutting intelligence discipline that adds value to all aspects of conventional intelligence and furthermore that it bears a substantial amount of characteristic traits – both advantageous and disadvantageous – and furthermore that the applicability of cyber intelligence methods is partly circumstantially limited.
Resumo:
The purpose of this study is to examine the impact of the choice of cut-off points, sampling procedures, and the business cycle on the accuracy of bankruptcy prediction models. Misclassification can result in erroneous predictions leading to prohibitive costs to firms, investors and the economy. To test the impact of the choice of cut-off points and sampling procedures, three bankruptcy prediction models are assessed- Bayesian, Hazard and Mixed Logit. A salient feature of the study is that the analysis includes both parametric and nonparametric bankruptcy prediction models. A sample of firms from Lynn M. LoPucki Bankruptcy Research Database in the U. S. was used to evaluate the relative performance of the three models. The choice of a cut-off point and sampling procedures were found to affect the rankings of the various models. In general, the results indicate that the empirical cut-off point estimated from the training sample resulted in the lowest misclassification costs for all three models. Although the Hazard and Mixed Logit models resulted in lower costs of misclassification in the randomly selected samples, the Mixed Logit model did not perform as well across varying business-cycles. In general, the Hazard model has the highest predictive power. However, the higher predictive power of the Bayesian model, when the ratio of the cost of Type I errors to the cost of Type II errors is high, is relatively consistent across all sampling methods. Such an advantage of the Bayesian model may make it more attractive in the current economic environment. This study extends recent research comparing the performance of bankruptcy prediction models by identifying under what conditions a model performs better. It also allays a range of user groups, including auditors, shareholders, employees, suppliers, rating agencies, and creditors' concerns with respect to assessing failure risk.